Labor Displacement in Artificial Intelligence Era: A Systematic Literature Review

以系統性文獻綜述談人工智慧時代下的勞力取代

Chu-chen Rosa YEH*
葉俶禎
Cze-chiun Jasmine WONG**
黃子君
Wei-wen Vera CHANG***
張煒雯
Chih-chien Steven LAI****
賴志樫

Keyword: artificial intelligence, labor displacement, labor market
關鍵詞：人工智慧、人力取代、勞動市場
Abstract

The rise of artificial intelligence (AI) has made labor displacement once again the hottest issue. The rapid development of AI enhances many functions of machines and has been widely implemented in industries such as medicine, healthcare, service, hospitality, and manufacturing. Since the industrial revolution, machines have been used to complete tasks that humans used to perform, which lead to labor displacement, especially in the manufacturing industry. In the AI era, machines are getting smarter and the predictions are that one day machines may surpass human beings in many ways. Therefore, an intriguing question that asks “will AI take over the human’s job?” has been the central theme in many research inquiries. As an attempt to find clues for the answer to that question, this study conducted a literature review to present the status quo of research and current conclusions of labor displacement research in the AI era. The review included 39 scholarly articles published in the Scopus database between 2016 and 2019. Through open coding and axial coding, three distinctive perspectives emerged on the impact of AI on labor, i.e., the optimistic view (e.g., new jobs, augmentation, added human value), the pessimistic view (e.g., unemployment, technology gaining control over humans, increasing social polarization), and the neutral view (e.g., too early to tell). This paper first provides a brief history of AI then reports the findings from the literature review. A common conclusion in the literature is that AI is still an evolving technology at this time and its future development remains at the hands of humans. It relies on human intelligence to guide the proper advancement of AI applications to benefit the human society.
摘要

人工智能(AI)的发展使得劳力取代再度成为热门的话题。AI加速了各个领域中机器功能的使用，如医药、医疗、服务、饭店业与制造业等。由过去的工业革命可以看到，原先由人类工作者经手的工作项目逐渐由机器自动化完成，进而导致劳力取代，这种现象在制造业尤其明显。在AI的时代，机器将变得更加聪明，许多专家甚至预测在许多方面机器的能力将会超越人类。因此，“AI最后是否将完全接手人类的工作？”是近年来热门的研究议题。为了解AI对劳动市场的影向，本研究回顾39篇自2016至2019年收录在Scopus资料库并与AI、科技、劳动市场、人力取代主题相关的文献，以呈现相关研究现状并回答AI是否对人力产生取代的研究问题。透过开放编码与主题编码的质性资料分析过程，文献回顾结果呈现三种独特的观点—正向(新工作、增能、增加人类价值等)、负向(失业、机器凌驾人类、社会两极化等)、及中立(为时过早、难有定论)。本文先简述AI发展的历史，接著以文献回顾所呈现的三种观点探讨AI对劳动市场带来的冲击。本研究发现，在回顾的文献中最常见的结论是：AI目前是处于开发时期的新兴科技，其未来发展方向掌握在人类手上，须依赖人类的高度智慧来导引AI科技的发展过程与方向，使其在未来能造福人类社会。
Introduction

The rapid growth of Artificial Intelligence (AI) has attracted attention from both academia and practitioners worldwide. AI as a field is generally known as the attempt to reproduce human ability in computer systems.\(^1\) It is a technology capable of interacting intelligently with its environment under the collaboration among algorithms, hardware, and software. It is implemented and widely discussed in several industries, such as medicine,\(^2\) service,\(^3\) manufacturing,\(^4\) healthcare,\(^5\) and hospitality industries.\(^6\) Since the industrial revolution, machines have been used to complete tasks that humans used to perform, which lead to labor displacement, especially in the manufacturing industry.\(^7\) In the AI era, machines are getting smarter every day and the predictions are that they may eventually surpass human beings in many ways. Therefore, an intriguing question that asks

“will AI take over the human’s job?” has been the central theme in many research inquiries. The purpose of this study is to present the status quo of scholarly discussion that attempted to answer that question, by reviewing and integrating recent literature on the subject.

Several factors are behind the fast development and adoption of AI in the industries. First, it is propelled by a widely held belief that it brings benefits of improved efficiency and accuracy in many aspects. For instance, the facial recognition technology, one of the popular AI applications, is installed in the customs of many international airports to recognize and record personal information of international travellers on arrivals or departures. The facial recognition system enhances the efficiency of the customs check, which decreases the time of travelers waiting in line in front of the customs; it also reduces the need to hire more customs officers. Amazon and Netflix use AI to track consumers’ internet browsing behaviors, analyze patterns of their purchasing habits, and match this knowledge of consumer psychology with the demographic information they have on a consumer to provide personalized recommendation on merchandises, books, and movies.

Secondly, as some countries with more developed economies have experienced the issue of aging, labor shortage, or skyrocketing labor costs, governments and enterprises have started to rely on robots and AI technology to supplement the workforce.⁸⁹ For example, the famous Apple and Samsung supplier, Foxconn, is known for its fast move to smart automation in order to

overcome labor shortage and rising labor costs in China, where it maintains its major manufacturing operation. Foxconn replaced 60 thousand factory workers with robots in 2016, and was reported in 2018 to have planned to invest $4 billion more in new robotics and automation technology.

However, not everyone welcomes the arrival of the AI era with open arms. While factory owners and company CEOs are quick to take their side by AI, the general workforce is more reserved about the idea. There is a fear that their employer may one day decide to invest in AI technology rather than human labor, which may leave them jobless, like the 60 thousand factory workers in the Foxconn case. This anxiety is magnified by the threatening predictions of some of the famous critics, such as the late scientist Steven Hawking and Tesla CEO Elon Musk, as well as many Hollywood blockbuster movies that pose AI as a threat to humanity (for example, The Terminator; The Matrix; I, Robot). Similarly, the mass media tends to publish disturbing headlines predicting massive job loss whenever a new AI technological breakthrough is made.

Donald Hislop, Crispin Coombs, Stanimira Taneva, and Sarah Barnard conducted a literature review in 2017 on papers published from 2011 to 2016 to

uncover the influence of technology, including AI, on labor.15 Their research covered several issues related to the general impact of recent emerging technology on society, with work-related outcomes as a part of its findings. As AI is developing in exponential speed, scholarly publications addressing similar concerns have also increased in the past few years. Therefore, there is a need to continue surveying the literature for trends and additional insights into this issue. As a follow-up to Hislop and his colleagues’ work, this paper reviewed the extant literature related to AI technology and labor after 2016. Its purposes are to clarify the impacts of AI on the general workforce and to provide clues to the research question of “will AI take over the human’s job?”. This paper begins with a brief introduction to AI development. Next, the literature review methodology of this study is described, which includes detailed steps for the literature search, screening, and coding. Finally, the findings, which reveal several contrasting perspectives toward the impact of AI on labor, are summarized and discussed.

A Brief History of Artificial Intelligence

The term “Artificial Intelligence” was proposed by McCarthy and his colleagues in 1956. They defined the field of AI as “the science and engineering of making intelligent machines, especially intelligent computer programs.”16 At the beginning, AI was developed to carry out formal logic computation, then its function slowly evolved for complex problem solving with if-then reasoning method, which was cast as an important early form of AI.17 Even though the

\begin{footnotesize}
\footnotesize
\begin{itemize}
\end{itemize}
\end{footnotesize}
invention of new techniques such as machine learning and deep learning, which enable AI to learn from data itself, have accelerated the development of AI, these techniques are still being applied on physical machines nowadays.¹⁸

For more than two decades, the study of AI was not popular, until 1997, when Deep Blue won Garry Kasparov, the chess champion in the world.¹⁹ Afterwards, Google DeepMind’s AlphaGo beat not only the other Go programs but also the human players, Fan Hui,²⁰ Lee Sedol, and Ke Jie in the GO game.²¹ The achievement of AlphaGo was made possible by the development of the internet, cloud storage, and big data in recent years. Algorithms and huge datasets are critical elements to support the operation of AI. AI enables a machine to learn from past experiences and data fed to it using machine learning or deep learning techniques until the machine can complete a task under human instruction. Today, AI is believed to be one of the three important driving forces of the new industrial revolution, next to big data and algorithms.²²

Several definitions of AI can be found in the literature. In 1984, Nils Nilsson defined AI as a “machine that can perform tasks requiring reasoning, judgement, and perception that previously could be done only by human”.²³ Robert Bogue described AI as “an intelligent agent” and “is a system that perceives its

²⁰ BBC, “Google Achieves AI ‘Breakthrough’ by Beating Go Champion.” *BBC News*,
environment and takes actions that maximize its chances of success in a particular task”.

24 Andreas Kaplan and Michael Haenlein believed that it is “a system’s ability to correctly interpret external data, to learn from such data, and to use those learnings to achieve specific goals and tasks through flexible adaptation”.

25 These definitions do not always appear consistent; as Pei Wang pointed out, many problems exist in the attempt to define AI.

26 Nonetheless, most definitions in the literature highlighted the characteristics of AI as a technology that is capable of human-like thinking and can interact intelligently with its environment when completing a specific activity.

AI serves as a strong factor in the latest industrial revolution, named as Industry 4.0. The industrial revolution refers to the transition of the production processes, mostly seen in the manufacturing industry, when a new and novel technique is developed.

27 Since mid-18th century, there have been three revolutions taking place and the most current one is the fourth industrial revolution. In each of the revolutions, new techniques, technologies, and machines were implemented in various industries, which released human labor from manual routine tasks and enhanced their productivity and efficiency. Spyros Makridakis believed that the industrial revolution raised the standard of living of human beings.

28 However, during the first and the second revolutions, human labor was released from the factory and substituted by machines, which lead to unemployment. AI and its applications were also reported to have the capability to

27 Dopico et al., A Vision of Industry 4.0, pp. 407-413.
These past experiences of the industrial revolution, together with the rapid advances of the AI technology naturally lead people to have higher anxiety and concern about the possibility of the history repeating itself.

Artificial Intelligence and Labor Displacement Research

To estimate the possibility of human labor being replaced by machines, two approaches can be found in the literature, which are Carl Frey and Michael Osborne’s occupational-level analysis approach and Melanie Arntz, Terry Gregory, and Ulrich Zierahn’s task-level analysis approach. Frey and Osborne examined the probability of computerization in order to reveal which occupation was under high risk of computerization which may lead to unemployment. In contrast, Arntz, Gregory, and Zierahn examined the probability of automation under the approach of task-level analysis, that was, whether all tasks of a job could be automated. As a result, Arntz et al. suggested that only 9% of U.S. workers’ jobs faced the automation risk, while Frey and Osborne suggested the possibility of automation was 47%. Jeff Borland and Michael Coelli adopted the approach of Arntz et al. on the Australian population and found the same automation risk of 9%.

Shotaro Tani reported a joint research project conducted by the Nikkei and the Financial Times, which also took the task-level approach to calculate the possible impact of automation in the workplace. The outcome of the project was an interactive calculator which drew on data from the McKinsey Global Institute. The Nikkei Asian Review used this interactive calculator to examine which jobs Asian workers were expected to lose to robots. Based on this interactive calculator, over 80% of the activities performed by manufacturing workers could be automated, compared to nearly 70% in the food industry, nearly 50% in the transportation industry, around 43% in construction, 41% in farming, fishery and forestry, and 25% in health care. Applying this interactive calculator, the Financial Times concluded that although nearly every occupation had some tasks that could be automated, fewer than 5% of occupations can be fully automated due to the limitation of current technology.

The two approaches both suggested how likely new technology might automate jobs or tasks but on a fairly general level, without paying attention to the context of a specific industry or a profession, nor did they probed into other forms of impact AI may bring aside from human-machine substitution. The work of Hislop et al. revealed evidence on how the new technologies have impacted knowledge workers and service professionals specifically, and society in general. Their report was based on four themes: (1) clarification of the definition of emerging technologies and job-related patterns, (2) a framework of specific outcomes and the mediators after installation of technologies, especially in healthcare, transportation and non-specific sectors, (3) the influence of those technologies on the professions and the society, and (4) the ethical issues emerged

36 Donald Hislop et al., Impact of Artificial Intelligence, pp. 1-30.
from new technology implementation. From a review of a total of 182 articles published in the period of 2011 to 2016, Hislop and his colleagues concluded that AI mainly affects the employees by augmenting their ability to complete tasks and expanding their job roles to include other value-added responsibilities that human do better. However, they also cautioned that ethical issues should be concerned for further implementation of AI or new technologies to ensure safe utilization in the human society.

In recent years, research in AI and labor displacement has become a burgeoning field. As advancement of AI technology and applications accelerates, AI-related scholarly publications have also exploded in the last few years. At present, as the technology is still evolving, a periodical review of the literature on AI’s impact on the labor market will contribute to the much needed understanding and the necessary preparation of human beings to better adapt in the AI era. Therefore, this paper aims to review the most recent literature on the topic of AI technology and labor to clarify the different impacts of AI on the general workforce.

Methodology

The method for the present study is a systematic literature review. After the research topic and purpose of this study were defined, Hislop and his colleagues’ approach in conducting the rapid literature review was followed in order to generate the findings. The process for the review comprises three steps: (1) systematic literature search; (2) literature screening and selection; and (3) thematic synthesis.
Step 1: Systematic literature search

This study searched artificial intelligence and labor related academic articles through the Scopus e-journal platform. This platform has a collection of thousands of academic papers with fairly good quality and it is also the most accessible database for our research team. The search initiated with a publication date range filter from 2016 to 2019, in combination with other terms. Several pairs of search terms were used to search the Scopus platform, including artificial intelligence and labor, artificial intelligence and employment, artificial intelligence and job, artificial intelligence and social impact. Each query was setup to search the entire article for the search terms. Therefore, as long as the combinations of words/phrases above appear in any part of an article (i.e., title, abstract, keywords, main text, references), it would be picked up and included in the search result. This broad initial search resulted in a total of 1761 articles.

Step 2: Screening and selection of study

In this stage, the criteria used for filtering the articles were established. Articles selected for this review had to fulfill the following criteria of being written in English, full-text available and accessible, and published in peer-reviewed articles. Since English is still the official language in most journals claiming international status, only articles written in English were selected to avoid the need for translation before reading and coding. It goes without saying that only the full-text articles could give the research team complete access to the contents of the articles. Furthermore, articles chosen from peer-reviewed journals were assumed to have a certain degree of quality since they would have been evaluated by experts in the field and possibly had gone through several rounds of revisions before official publication. Technical papers that purely published models and algorithms for application purposes, as well as articles which contents were not related to our
research purpose, were excluded. A total of 193 qualified articles survived this screening process. From the list of 193 articles, the research team examined each title and the abstract to ensure the content has the highest relevance to the issue of labor displacement. Finally, 39 articles were included in the present study.

Table 1. Summary of literature search result.

<table>
<thead>
<tr>
<th>Step 3: Thematic synthesis of selected studies</th>
</tr>
</thead>
<tbody>
<tr>
<td>Members of the research team in this stage included the authors and three graduate students. They were assigned different articles to code into excel with a given codebook. The team met weekly to review the coding progress and discussed the consistency in coding. When inconsistency or disagreement in coding occurred, the team resolved them through consensus and the codebook was revised. The codebook went through a total of three revisions. The final version of the codebook includes four categories, which are the source, the methodology, conclusions, and implications or suggestions of the article. The coding scheme is shown in Table 2.</td>
</tr>
</tbody>
</table>
Table 2. The coding scheme.

<table>
<thead>
<tr>
<th>Source</th>
<th>Coding</th>
</tr>
</thead>
<tbody>
<tr>
<td>Name of Journal</td>
<td>Text</td>
</tr>
<tr>
<td>Year published</td>
<td>Text</td>
</tr>
<tr>
<td>Author</td>
<td>Text</td>
</tr>
<tr>
<td>Fields published</td>
<td>Text</td>
</tr>
<tr>
<td>Topic discussed</td>
<td>1-Impact of Artificial intelligence</td>
</tr>
<tr>
<td></td>
<td>2-The role of artificial intelligence</td>
</tr>
<tr>
<td></td>
<td>3-Future of work/ future of employment</td>
</tr>
<tr>
<td></td>
<td>4-Labor demand/ labor force</td>
</tr>
<tr>
<td></td>
<td>9-Other</td>
</tr>
<tr>
<td>Methodology</td>
<td>1-Opinion/ commentary</td>
</tr>
<tr>
<td>Research Design</td>
<td>2-Literature review</td>
</tr>
<tr>
<td></td>
<td>3-Data collection (quantitative or qualitative)</td>
</tr>
<tr>
<td></td>
<td>4-Secondary data analysis</td>
</tr>
<tr>
<td></td>
<td>9-Other</td>
</tr>
<tr>
<td>Geographical focus</td>
<td>1-None (Universal)</td>
</tr>
<tr>
<td></td>
<td>2-US</td>
</tr>
<tr>
<td></td>
<td>3-European countries</td>
</tr>
<tr>
<td></td>
<td>4-Asian countries</td>
</tr>
<tr>
<td></td>
<td>5-Oceania countries</td>
</tr>
<tr>
<td></td>
<td>9-Other</td>
</tr>
<tr>
<td>Conclusion</td>
<td>1-Labor replacement/ labor displacement/ replacement/ substitution</td>
</tr>
<tr>
<td></td>
<td>2-Unemployment</td>
</tr>
<tr>
<td></td>
<td>3-Wages</td>
</tr>
<tr>
<td></td>
<td>4-Assistance/ complement/ tool/ platform</td>
</tr>
<tr>
<td></td>
<td>5-Create new jobs</td>
</tr>
<tr>
<td></td>
<td>6-Improve productivity/ efficiency</td>
</tr>
<tr>
<td></td>
<td>9-Others</td>
</tr>
<tr>
<td>Implication or suggestion</td>
<td>1-Education</td>
</tr>
<tr>
<td></td>
<td>2-Organization</td>
</tr>
<tr>
<td></td>
<td>3-Government</td>
</tr>
<tr>
<td></td>
<td>9-Other</td>
</tr>
</tbody>
</table>
Findings and Discussion

This section introduces the key findings of the present study, which are summarized in three general categories under the headings of (1) research method of selected articles, (2) three different schools of views toward AI’s impact on labor, and (3) implications discussed in selected articles. The research method of selected articles provides a profile picture of the publication selected into our review, which includes the fields, the types and the topics of these publication, a summary of keywords listed, the research design, and the geographical focus. The three different schools of views toward AI’s impact on labor are the optimists, the pessimists and the neutralists. Implications discussed in selected articles are divided into four categories targeting at individual, education, organization, and government entities.

Research method of selected articles

Fields of publication, types of publication and topics discussed. The present study reviewed 39 articles in total, including 36 peer-reviewed articles, and 3 working papers and book chapters (see a detail list in the Appendix). Table 3 presents the summary of the types of publication, topics discussed, and the frequency of fields published. The most frequently discussed topics coincide with the research purpose and include the impact of AI and other related technologies on the society and labor, the role of AI and other related technologies, the change in future employment or how future work will likely be shaped, and finally the demand in labor force. The number in fields of publication is cumulative of all articles and the categories or sub-categories they were indexed in the Scopus database. An article can be indexed under more than one category or sub-category. For example, the journal “Futures” is indexed in the category of Economics and in
Regional and Urban Planning. It is interesting to note that the top three fields the reviewed articles published in are Economics (10 articles), Business (8 articles), and Management (4 articles), while only two articles were published in each fields of Computer Science and Artificial Intelligence. This is an indication that the economists and business scholars seemed to have a higher concern over the issue of technology-driven labor displacement than the computer scientists. It is possibly because labor displacement has strong implications for the labor market, in terms of supply and demand of labor and labor cost, all of which are economics and management issues. It is also a warning sign that computer scientists did not seem to have paid enough attention to how AI or related technologies affect the labor force or the general society.

Table 3. Summary of types of publication, topics discussed and fields published.

<table>
<thead>
<tr>
<th>Types of publication</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Peer-reviewed journal articles</td>
<td>36</td>
</tr>
<tr>
<td>Working papers and book chapter</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topics discussed</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Impact of artificial intelligence</td>
<td>21</td>
</tr>
<tr>
<td>The role of artificial intelligence</td>
<td>4</td>
</tr>
<tr>
<td>Future of work/ future of employment</td>
<td>9</td>
</tr>
<tr>
<td>Labor demand/ labor force</td>
<td>3</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>*Fields of publication</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Economic</td>
<td>10</td>
</tr>
<tr>
<td>Business</td>
<td>8</td>
</tr>
<tr>
<td>Management</td>
<td>4</td>
</tr>
<tr>
<td>Computer Science</td>
<td>2</td>
</tr>
</tbody>
</table>

xvii
The number in fields of publication is cumulative of all articles and the categories or sub-categories they were indexed in the Scopus database. An article can be indexed under more than one category or sub-category.

Keywords used. Keywords were designated by authors to declare the focus of their articles. By analyzing the keywords, we can get a picture of the topical areas represented by the literature. Table 3 summarizes the frequency of the keywords which were used more than once. The frequently used keywords are artificial intelligence, robot(ics), employment, automation, future of work and machine learning. Some examples of the keywords that appeared only once are big data, economics, human capital, job insecurity, workplace, and leadership. Even though AI is included in the discussion in all of the reviewed articles, only 19 articles chose the term as the keyword. Some articles used the more specific form of AI such as robot(ics) and machine learning as the keywords; some preferred a broader term such as automation, digitalization, new technology or computer/computerization. This is of course a reflection of the diverse definitions of AI resulted from an array of forms, structures and capability of the technology as described in Wang.³⁷

³⁷ Pei Wang, "What do you mean by ‘AI’," pp. 362-373.
Table 4. Frequencies of keywords used.

<table>
<thead>
<tr>
<th>Keywords</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Artificial intelligence</td>
<td>19</td>
</tr>
<tr>
<td>Robot(ics)</td>
<td>9</td>
</tr>
<tr>
<td>Employment (Job)</td>
<td>6</td>
</tr>
<tr>
<td>Automation</td>
<td>4</td>
</tr>
<tr>
<td>Future of work</td>
<td>3</td>
</tr>
<tr>
<td>Machine learning</td>
<td>4</td>
</tr>
<tr>
<td>Human-computer interaction/Human-machine symbiosis</td>
<td>4</td>
</tr>
<tr>
<td>Technological change</td>
<td>3</td>
</tr>
<tr>
<td>Digitalization</td>
<td>2</td>
</tr>
<tr>
<td>Human resource</td>
<td>2</td>
</tr>
<tr>
<td>Industrial revolution</td>
<td>2</td>
</tr>
<tr>
<td>Job (work) displacement</td>
<td>2</td>
</tr>
<tr>
<td>New technology</td>
<td>2</td>
</tr>
<tr>
<td>Computer/Computerization</td>
<td>2</td>
</tr>
</tbody>
</table>

Research design. The frequently used research design of the selected articles were literature review, secondary data analysis, and commentary. As shown in Table 4, only 7 out of 39 papers collected original data either by a qualitative or a quantitative approach. It is reflection of a lack of wide spread AI application resulting in difficulty in finding samples to collect data, or a lack of consensus in the definition of AI that led to difficulty in framing and targeting an empirical research to collect data. Table 4 also tabulated the geographical focus of the 39 articles. Two of the selected articles are cross-national comparison studies, one of them contrasted United States against China. Other geographically-specified articles mainly focused on the United States, Asian countries, Oceania countries, and Europe, while the remaining studies did not specify their geographical focus. The United States significantly outweighed other countries or regions in the number of scholarly publications on this topic.
Table 5. Frequencies of research design and geographical focus.

<table>
<thead>
<tr>
<th>Research design</th>
<th>Frequency</th>
<th>Geographical focus</th>
<th>Frequency</th>
</tr>
</thead>
<tbody>
<tr>
<td>Literature review</td>
<td>12</td>
<td>Non-specified</td>
<td>22</td>
</tr>
<tr>
<td>Opinion/ Commentary</td>
<td>7</td>
<td>United States</td>
<td>9</td>
</tr>
<tr>
<td>Secondary data analysis</td>
<td>7</td>
<td>Oceania</td>
<td>2</td>
</tr>
<tr>
<td>Data collection (Quantitative & qualitative)</td>
<td>7</td>
<td>Others (Geographical comparison)</td>
<td>3</td>
</tr>
<tr>
<td>Others</td>
<td>6</td>
<td>Asia</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Europe</td>
<td>1</td>
</tr>
</tbody>
</table>

The impact of technology and AI on labor market

We coded the conclusions of each selected article by themes using the coding scheme in Table 2. For conclusions that fell under the theme of “others”, they were recoded under new themes such as polarization of the society. Three different schools of views emerged from this analysis were the positive views of the optimists (11 articles), the negative views of the pessimists (11 articles), and the neutral views (17 articles). The optimists advocated the benefits brought by new technology and AI, such as new demands for jobs and tasks, and enhanced quality of decision making and work efficiency. Conversely, the pessimists identified and warned the public of the risks of potential negative consequences when AI and other emerging technologies were adopted, such as a massive loss of jobs. The neutralists consider both the positive and the negative aspects when discussing the...
impact of AI on labor and the society. The following sections provide the details of these different views. Table 6 summarizes the impact of technology and AI on labor market in the present study.

The view of the optimists

Assisting and augmenting humans. From optimists’ perspective, AI is recognized as an augmenting tool or a platform to assist humans,\(^{38}\)\(^{39}\) such as supporting employees to complete their tasks\(^{40}\) and improving the quality of services.\(^{41}\) For example, new technologies installed in the hospitals are augmenting health care providers in dealing with the daily tasks and gaining useful information to further enhance the health care design.\(^{42}\) Waymel et al. (2019) reported that radiologists in French expected that using AI would help them reduce the time spent on explaining the terminology, minimize medical error, and increase time to take care of patients.\(^{43}\)

Creating new jobs or tasks. Several scholars believed that, similar to the past
industrial revolution, new jobs would be created in this era.44 45 46 Deggans, et al. argued that new and innovative jobs could be born out of the innovation process as intelligence organizations were catalyzed.47 Agrawal, et al. also claimed that there would be increasing task demands for technology-related professionals to operate the computation of AI and to maintain the database for training AI.48 Jacobs and Karen concluded that “new techniques often sharply reduce the cost of an activity and consequently expand the volume demanded. The resulting situation is not simply the replacement of human labor but instead a substantially expanded industry”.49

Improving quality of decision making. On the one hand, AI can take over the mundanely repetitive or administrative tasks which will free up humans’ time and energy to focus on making more strategic decisions and doing more value-added innovative work.50 On the other hand, the ability of AI to quickly navigate volumes of information and provide the most relevant knowledge through its learning algorithm will help overcome the uncertainty and equivocality issues that are usually found during the decision-making process.51 AI’s continuously-advancing capability in prediction can help overcome the difficulties in many

49 Jerry A. Jacobs and Rachel Karen, “Chapter 2 Technology-Driven Task Replacement,” pp. 43-60.

business-related decisions by providing decision-makers statistically computed outcomes to make a better or more nuanced choice.52

\textbf{Improving efficiency and reducing cost.} One of the major points to support AI development is its ability to improve efficiency and thereby reduce costs associated with business operation.53 54 Georg Graetz and Guy Michaels argued that extensive use of robots would increase total factor productivity and wages, and reduce output prices.55 Jacobs and Karen held a similar belief and stated that AI would provide new techniques to reduce cost of operation, which may lead to lower prices and higher demand for a product, and thus can substantially expand an industry (i.e., more jobs).56

\textit{The view of the pessimists}

\textbf{Causing job loss by human-machine substitution.} For some scholars, the negative impacts on employment caused by new technology and AI is undeniable.57 New technology does lead to job substitution, lower labor demand, and unemployment. As the machines gets smarter, jobs that are repetitive and routine,58 with heavy physical need, low skilled59 or requiring low education level, will be replaced. Middle-level white-collar employees and blue-collar workers are

\begin{itemize}
\item 53 Ajay Agrawal, Joshua S. Gans and Avi Goldfarb, “Exploring the Impact of Artificial Intelligence” pp. 1-6.
\item 54 Dogan Gursoy et al., “Consumers Acceptance,” pp. 157-69.
\item 56 Jerry A. Jacobs and Rachel Karen, “Chapter 2 Technology-Driven Task Replacement,” pp. 43-60.
\item 57 Ming-Hui Huang and Roland T. Rust, “Artificial Intelligence in Service,” pp. 155-172.
\item 58 Jun Li, Mark A. Bonn, and Ben Haobin Ye, “Hotel Employee,” pp. 172-181.
\end{itemize}
expected to be substituted by destructive AI or machines.60 Frey and Osborne further predicted that workers in the transportation and logistics industry, administrative support, or production line were at risk to be replaced very soon.61

\textit{Technology gaining control over humans and demotivating humans to work}. As AI technology becomes more and more powerful, it will possibly change the nature of the interaction between technology and human. Makridakis described concerns from prior literature that humans may one day lose their dominance over computers and become a “pet” of the new technology.62 In other words, humans would no longer make decisions by themselves. Instead, computers or AI technology may condition how humans behave or react and tell humans what to do in the future. Anton Korinek expressed a similar concern and commented: “we humans still feel mostly in control of the intelligent algorithms and machines that we have created and that we interact with on a daily basis. However, …artificially intelligent agents … are in fact more and more in control of us humans”.63 As a matter of fact, human beings have become heavily reliant on the computers for information and algorithm-based predictions in the decision-making process. Some scholars concerned that this actually devalued human beings and may lead to a loss of motivation for humans to make decisions.64 As Paul Cockshott and Karen Renaud illustrated, machines have already taken over some critical decisions in the financial industry with the algorithm trade techniques.65 Another

\begin{itemize}
 \item Spyros Makridakis, “The Forthcoming Artificial Intelligence,” pp. 46-60.
\end{itemize}
possible negative consequence along the same line is that human workers may become less involved and demotivated to work.66

Increasing polarization of the society. As evidenced in the previous industrial revolutions, technology will enhance the concentration of capital (hence, power), and create wider gaps between winners and losers.67 Winners in the AI era may be the capitalists or the military who own the first cutting-edge AI development,68 employers who successfully implemented AI to cut operation costs or enhance competitiveness, and those who have the necessary competence to create and apply AI (e.g., AI developers and those who can work with AI).69 Losers, on the other hand, are companies and workers who do not update their skill set and are eventually sifted out by the technological advancement.

Decreasing wage of labor. Scholars such as Stephen DeCanio70 and Anton Korinek71 warned against the effect of AI in wage decrease. DeCanio predicted that the proliferation of robots would result in declining wages of industrial workers due to a smaller human-robot elasticity of substitution. Korinek observed that the real wages of regular workers have declined over the past four decades corresponding to the technological change over that period. Therefore, he concluded that one negative impact of AI would be the reduction of the regular (unskilled) workers’ market wages.

The view of the neutralists: Current AI as an evolving infant

The neutralists believed that it has yet to conclude at this moment whether technological change would end human work or be favorable to the general workforce, as AI is a developing technology and has a couple of unpredictable and uncertain factors. For example, Jeremy Atack, Robert Margo, and Paul Rhode differentiated between changes brought upon by current technologies and by the steam engines in the past, and suggested that while history may repeat itself, we do need to keep in mind that the impacts of these two technologies are fundamentally different. Therefore, we should stand in a neutral position and look forward to its development. Martin Upchurch referred AI as a “dead labor” which could neither pass present value nor bring about the new one, and was created by humans to imitate the human beings. Thus, humans should find our own value as we are the final decision-makers. Agrawal, Gans, and Goldfarb also suggested that the AI’s impact on the job would be a result of multiple factors, involving multiple facets. Therefore, it is too early to tell the overall impacts of AI on the labor market.

Table 6. Summary of the impact of AI and technology on labor market.

<table>
<thead>
<tr>
<th>Perspective</th>
<th>Description</th>
<th>Example</th>
</tr>
</thead>
<tbody>
<tr>
<td>The view of the optimists</td>
<td>Assist and augment humans</td>
<td>Assist and complement employees in completing tasks<sup>78</sup></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Gain useful information for further enhancing the health care design<sup>79</sup></td>
</tr>
<tr>
<td></td>
<td>Create new jobs or tasks</td>
<td>Increase technology-related task demand<sup>80</sup></td>
</tr>
<tr>
<td></td>
<td>Improve quality of decision making</td>
<td>Navigate information and provide knowledge through algorithms to overcome the uncertainty and equivocality issues during the decision-making process<sup>81</sup></td>
</tr>
<tr>
<td></td>
<td>Improve efficiency and reduce cost</td>
<td>Use of robot increases total factor productivity and reduces cost<sup>82</sup></td>
</tr>
<tr>
<td>The view of the pessimists</td>
<td>Cause job loss by human-machine substitution</td>
<td>Middle level white-collar employees and blue-collar workers are expected to be substituted<sup>83</sup></td>
</tr>
<tr>
<td></td>
<td>Technology gains control over humans and demotivates humans to make decisions</td>
<td>Humans follow the order made by computers<sup>84</sup></td>
</tr>
<tr>
<td></td>
<td>Increase polarization of the society</td>
<td>Humans become deeply reliant on the computers’ algorithm-based predictions</td>
</tr>
<tr>
<td></td>
<td>Decrease wage of labor</td>
<td>Create wider gaps between winners and losers<sup>85</sup></td>
</tr>
<tr>
<td>The view of the neutralists</td>
<td>Current AI as an evolving infant</td>
<td>Unpredictable<sup>87</sup> and uncertain factors exist<sup>88</sup></td>
</tr>
</tbody>
</table>

⁷⁸ Thomas Davenport et al., “How Artificial Intelligence,” pp. 24-42.
⁸² Georg Graetz and Guy Michaels, “Robots at Work,” pp. 753-768.
⁸⁴ Spyros Makridakis, “The Forthcoming Artificial Intelligence,” pp. 46-60.
The implications discussed in selected articles

Most of the reviewed articles recognized that AI is an unstoppable trend and rapid technological development. Therefore, in the implications section of those reviewed articles, the authors also suggested some strategies to deal with this trend. These suggestions were mainly directed at individuals, education institutions, organizations, and the government, as described in the following sub-sections and summarized in Table 7.

Individual

AI is cast as the next industrial revolution which will bring about large scale skill change. Human beings will be forced to work alongside machines or expand their roles on the job. Mohammad Hossein Jarrahi believed that as AI evolved and improved over time, managers and employees would also have to constantly react and adapt to the change. Many scholars hold similar views that employees will need to get prepared for the transition and “develop new skills to complement advances in AI technology”. The idea of continuously updating AI literacy, i.e., transferring and applying the latest AI technology knowledge into practice, was also suggested to human decision-makers.

Education

The changing technological environment calls for a reform in the education

of children for future workplace in the AI era. Educational institutions can put effort into imparting the knowledge of AI and the ability to use AI, such as the language of system coding and the algorithms. Likewise, Ming-Hui Huang and Roland Rust implied that creative thinking, data interpretation ability, and decision making are also important in the AI era. Scholars also call for more evidence-based research on the development and application of AI and technologies, by which academic community can provide the public with an insight into the current status and the trend of technology.

Organization

Human resource leaders play an important role in the organization in the world of AI. The success of a firm relies on how the talents are hired, motivated, and managed. These processes are not easy to convert to computational procedure, as the final decisions can only be made by a human. Prasanna Tambe, Peter Cappelli, and Valery Yakubovich indicated that a human resource leader also needs to comprehend the crucial developments in this AI era and specify the new competencies the organization may need from a talent. Thus, they can recruit or train a new talent appropriately to fulfill the organization’s needs and subsequently sustain organizational growth. Furthermore, human resource practitioners should develop and implement internal training programs to help employees adapt to the changing technological environment and enhance their company’s

competitiveness. A new business strategy needs to be elaborated to catch up on the current trend of AI technology for the organization to succeed, such as adopting a marketing concept of AI as a reliable and efficient partner. For policymakers, Davenport and others suggested paying attention to issues of data privacy, bias, and ethics so that companies could ensure a balance between commercial and individual interest.

Government

A “lifelong learning” concept could be promoted by the government to keep their citizens posted on the current trends and become more adaptive to the changing environment. In addition, it is suggested that the government should protect the affected workers and retrain them so that they are able to self-adjust and re-gain employment as soon as possible. As AI may bring about unemployment to some extent, the idea of a guaranteed basic income or universal basic income, which is a basic payment given to an individual during a certain period, has been suggested for the AI era. However, the matter of how to implement it, or whether it is necessary is still under debate. Moreover, the robot tax collection from the firms, calculated according to their robot usage, is another debatable suggestion.

100 Jun Li, Mark A. Bonn, and Ben Haobin Ye, “Hotel Employee,” pp. 172-181.

xxx
Table 7. Summary of implications discussed in selected articles.

<table>
<thead>
<tr>
<th>Implication</th>
<th>Example</th>
</tr>
</thead>
</table>
| Individual | ● Get prepared for change\(^{108}^{109}\)
| | ● Upgrade skills\(^{110}\) |
| Education | ● New AI related course design and delivery\(^{111}\)
| | ● More evidence-based research on AI\(^{112}^{113}\) |
| Organization| ● Heighten role of human resource manager\(^{114}\)
| | ● Provide employee training programs on AI application\(^{115}^{116}\)
| | ● Incorporate AI in marketing strategy\(^{117}\)
| | ● Pay attention to issues of data privacy, bias, and ethics\(^{118}\) |
| Government | ● Promote lifelong learning concept
| | ● Protect & retrain workers affected\(^{119}^{120}\)
| | ● Provide guaranteed basic income or universal basic income\(^{121}\)
| | ● Collect robot tax\(^{122}\) |

Conclusions

This systematic review is an attempt to synthesize recent scholarly publications on the issue of AI technology’s impact on labor displacement, in order
to provide an up-to-date overview of the progress in this field of study. Through the review of 39 scholarly articles published between 2016 and 2019, we have reported the types of research that have been published (fields of publication, types of research design, etc.) and the issues being debated (optimistic vs. pessimistic vs. neutral views).

The review found this field of study is still at an early stage. Particularly, most published articles just discussed the general impacts or the roles of AI in the workforce at a conceptual level. These articles appeared in the form of literature reviews or commentaries, mostly published in journals whose foci were on economics or business. Only a third of the reviewed articles reported empirical evidence.

Regarding the impacts of AI on labor, three distinctive perspectives emerging from the literature were the optimists’, the pessimists’, and the neutralists’ views. The optimists advocated the benefits that new technology and AI would bring, such as assisting and augmenting humans in a workflow, creating new demand for jobs and tasks, enhancing the quality of decision making and work efficiency, and reducing cost. Opposite to the optimists, the pessimists identified and warned the public of the risks of potential negative consequences when AI and other emerging technologies were adopted, such as a massive loss of jobs, the control of technology over humans, the humans’ complacent and demotivation in decision making, the increasing polarization of the society, and the decrease of labor wage. The neutralists considered both the advantages and disadvantages when discussing the impacts of AI on labor and society.

Similar to the conclusion of Hislop et al., when considering the work-related outcomes of emerging technologies, the concept of augmentation of humans and human work permeates the literature. The body of research published between 2016-2019 seemed to agree that the new AI technology would surely replace humans but only in certain algorithm-ready tasks, taking those performed by the
production and assembly line workers in the manufacturing sector as an obvious example. However, for other sectors studied, the replacement is mostly carried out on the task level and appears gradually as a form of efficiency or quality improvement, “rather than wholesale replacement” of a job. Using the flourishing application of AI in FinTech as an example, through smart algorithms, companies are now able to match the needs of customers to financial products, which enables the service representatives to accurately target their efforts, increase efficiency of sales, and improve customer satisfaction.

Another consensus from the reviewed papers is the urgent need for humans to realize that the tide of AI technology is real and has gained enough momentum for large scale implementation. Hence, unless humans learn to surf the technological wave, we are likely to be drowned in it. One dominant scenario that has been reported in this AI wave is the human-machine collaboration. As described above, in most sectors, AI does not replace an entire job but rather accompanies or interacts with humans in the completion of certain tasks. Therefore, to meet the demand of future human-machine collaborated workplaces, humans need to master a different set of knowledge, skills and abilities (KSAs) to work with smart machines successfully. These KSAs may include basic AI literacy, domain specific technology applications, the psychology of human-machine interface, ethical development and application of AI, as well as the ability to seize control of the technology instead of being controlled by it. Massive skill change initiatives are advocated by many scholars, regardless of their optimistic or pessimistic views.

In short, AI development is still in its infancy. At present, most applications of AI bear little resemblance to the characteristics in its documented definitions (i.e., a technology that is capable of human-like thinking and can interact

123 Donald Hislop et al., *Impact of Artificial Intelligence*, p. 18.
intelligently with its environment when completing a specific activity), and the success of AI implementation is mostly anecdotal. It will take time for AI technology to achieve more general and wider influence on the society. Grace et al. (2018) suggested that at least ten more years are needed for the AI technique to achieve the mature stage for full-scale implementation. Nonetheless, with the powerful implication of what this technology can do to the human society, it is imperative that we humans have to fully understand the potential repercussions in order to get prepared for the coming AI era. It is undeniable that AI can cause serious impacts on the labor market, in the form of labor substitution or skill change, however, it also creates new jobs, augments humans to undertake difficult tasks or demands, and releases humans from the repetitive routines to do what humans do best. Moreover, it could bring several positive influences on the national economy with a long term perspective. Hence, in the AI era, it is important to master the new knowledge and discipline of AI and its applications.

Limitations and Future Research Suggestions

This study used the systematic literature review as the main approach. This approach synthesizes key themes and emerging debates in the literature to track current progress of a topic and is beneficial for researchers interested in the topic. However, a major limitation of this approach is the inability to create new knowledge related to the topic reviewed. In addition, due to the accessibility issue of databases and the availability of full texts in the database, this study may have missed important research findings in the past four years. Finally, as this study discovered, the field of study lacks sufficient empirical evidence. As such, most of

the discussion of AI’s impact on labor is still speculative.

In light of the progress observed in this line of study, we call for more extensive and robust studies that generate empirical knowledge of the issue of interest. Two broad categories of research are suggested for future researchers to accomplish this. One is to fully exploit the technique of big data analysis and machine learning to track the demand of new job titles or job tasks being created and compare that to the decrease or disappearance of existing job titles or job tasks. Another important research stream is devoted to how humans interact with AI technology, under the topics of AI technology acceptance by different users, human-machine collaboration psychology or behavior, and ethical considerations.

Acknowledgement

This present study is funded by the Ministry of Science and Technology (MOST 108-2634-F-003-005).
Bibliography

ACEMOGLU, Daron and Restrepo, Pascual

AGRAWAL, Ajay, Joshua, S. Gans, and Avi Goldfarb

ARNTZ, Melanie, Terry Gregory, and Ulrich Zierahn

ATACK, Jeremy, Robert A. Margo, and Paul W. Rhode

BADER, Verena and Stephan Kaiser

BAHRIN, Mohd Aiman Kamarul, Mohd Fauzi Othman, Nor Hayati Nor Azli, and Muhamad Farihin Talib

xxxvi
BBC

2016 “Google Achieves AI 'Breakthrough' by Beating Go Champion.”

Bogue, Robert

Borland, Jeff and Michael Coelli

Boyd, Ross and Robert J. Holton

Brougham, David and Jarrod Haar

CBC

Cockshott, Paul and Karen Renaud

Council of Europe [COE]

DAVENPORT, Thomas, Abhijit Guha, Dhruv Grewal, and Timna Bressgott
2020 “How Artificial Intelligence Will Change the Future of Marketing.”
Journal of the Academy of Marketing Science, Vol. 48, No. 1
(January 2020), pp. 24-42.

DECANIO, Stephen J.
2016 “Robots and Humans – Complements or Substitutes?” Journal of

DECKER, Michael, Martin Fischer, and Ingrid Ott
2017 “Service Robotics and Human Labor: A First Technology
Assessment of Substitution and Cooperation.” Robotics and

DEGGANS, Jerome, Tomas Krulicky, Maria Kovacova, Katarina Valaskova,
and Milos Poliak
2019 “Cognitively Enhanced Products, Output Growth, and Labor Market
Changes: Will Artificial Intelligence Replace Workers by
Automating Their Jobs?” Economics, Management, and Financial

DOPICO, M., A. Gomez, D. Chantada-de la Fuente, N. García, R. Rosillo and J.
Puche
2016 A Vision of Industry 4.0 from an Artificial Intelligence Point of
View. In Proceedings of the International Conference on Artificial

FRANCIS, S.
2018 “Foxconn to invest $4 billion in new robotics and automation
https://roboticsandautomationnews.com/2018/02/24/foxconn-to-
invest-4-billion-in-new-robotics-and-automation-technology/16182/

FRANK, Morgan R., David Autor, James E. Bessen, Erik Brynjolfsson, Manuel
Cebrian, David J. Deming, Maryann Feldman, and others.

FREY, Carl Benedikt and Michael A. Osborne

FUTCH, Mike

GALLIE, Duncan

GILCHRIST, Karen

GRACE, Katja, John Salvatier, Allan Dafoe, Baobao Zhang, and Owain Evans

GRAETZ, Georg and Guy Michaels

GURSOY, Dogan, Oscar Hengxuan Chi, Lu Lu, and Robin Nunkoo

HALDEVANG, Max de.

https://qz.com/1423685/stephen-hawking-says-superhumans-will-take-over-ai-is-a-threat-and-humans-will-conquer-space/

HAMET, Pavel and Johanne Tremblay

HISLOP, Donald, Crispin Coombs, Stanimira Taneva, and Sarah Barnard

https://www.voced.edu.au/content/ngv%3A80279

HOWARD, John

HUANG, Ming-Hui and Roland T. Rust

JACOBS, Jerry A. and Rachel Karen

JARRAHI, Mohammad Hossein.
KAPLAN, Andreas and Michael Haenlein
KAPLAN, Andreas and Michael Haenlein
KORINEK, Anton
KWONG, Robin, Joanna S. Kao, Claire Manibog, and Toyoki Nakanishi
LEVY, Frank
LI, Jun, Mark A. Bonn, and Ben Haobin Ye
181.

LUO, Xueming, Siliang Tong, Zheng Fang, and Zhe Qu.

MAKRIDAKIS, Spyros

MCCARTHY, John

MCPHEE, Michele, K.C. Baker, and Corky Siemaszko

NILSSON, Nils J.

OLHEDE, Sofia and Patrick J. Wolfe

PWC.

QURESHI, Mohammed Owais and Rumaiya Sajjad Syed

2014 “The Impact of Robotics on Employment and Motivation of Employees in the Service Sector, with Special Reference to Health...

SAHOTA, Neil and Michael Ashley

SCHWAB, Klaus

TAMBE, Prasanna, Peter Cappelli, and Valery Yakubovich

TANI, Shotaro

UPCHURCH, Martin

VEILE, Johannes W., Daniel Kiel, Julian Marius Müller, and Kai-Ingo Voigt

WAKEFIELD, Jane

WANG, Pei

WAYMEL, Q., S. Badr, X. Demondion, A. Cotten, and T. Jacques

WESCHE, Jenny S. and Andreas Sonderegger

WOLNICKI, Miron and Ryszard Piasecki

Appendix. Articles reviewed in the present study

<table>
<thead>
<tr>
<th>No.</th>
<th>Title</th>
<th>Author(s) and year published</th>
<th>Journal</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>Algorithmic decision-making? The user interface and its role for human involvement in decisions supported by artificial intelligence</td>
<td>Bader, V., & Kaiser, S. (2019)</td>
<td>Organization</td>
</tr>
<tr>
<td>7</td>
<td>Testing the employment</td>
<td>Barbieri, L.,</td>
<td></td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s) and year published</td>
<td>Journal</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s) and year published</td>
<td>Journal</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>19</td>
<td>When will AI exceed</td>
<td>Grace, K.</td>
<td>Journal of Artificial</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s) and year published</td>
<td>Journal</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>--------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>22</td>
<td>Artificial intelligence in medicine</td>
<td>Hamet, P., & Tremblay, J. (2017)</td>
<td>Metabolism</td>
</tr>
<tr>
<td>26</td>
<td>Rulers of the world, unite! The challenges and</td>
<td>Kaplan, A., & Haenlein, M.</td>
<td>Business Horizons</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s) and year published</td>
<td>Journal</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s) and year published</td>
<td>Journal</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------------------------------</td>
<td>--------------------------------</td>
</tr>
<tr>
<td>38</td>
<td>When computers take the</td>
<td>Wesche, J. S., &</td>
<td>Computers in Human</td>
</tr>
<tr>
<td>No.</td>
<td>Title</td>
<td>Author(s) and year published</td>
<td>Journal</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>------------------------------</td>
<td>------------------------------</td>
</tr>
</tbody>
</table>