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Abstract 

The comparative method is intrinsic to the history of science. Despite 

this fact, studies comparing Chinese and Indian mathematical texts remain 

few. Scholars have long noticed similarities between Chinese and Indian 

algebraic results and procedures, numeration systems and astronomy. Yet, 

these comparisons raise interesting questions for historiography: as 

mathematical texts are written in classical Chinese and Sanskrit, corpuses 

became representative of so-called ‘Chinese mathematics’ or ‘Indian 

mathematics’, thus reducing the concept of culture to nation or civilization.  

Since Wylie’s first comparative study in 1852, many scholars have 

focused on the resemblance between Chinese and Indian indeterminate 

equations. The analysis of India’s contribution to the solution of 

indeterminate equations (kuṭṭaka) and the dayan 大衍  method of Qin 

Jiushao 秦九韶 constitutes an essential part of the historiography of the 

comparative study of mathematics in India and China. The aim of this article 

is twofold: 1) to investigate the construction of this history, in particular 

how the concept of transmission depends on prejudice regarding algorithms; 

and 2) to propose an alternative ways of comparison and show their promise. 

To reveal the heuristic dimensions of contrast, I am going incorporate recent 

studies on epistemic cultures as well as an example based on two medieval 

treatizes by Li Ye 李冶 and Nārāyaṇa and their relation to cognitive tasks. 

摘要   

比較研究法是科學史不可或缺的一部分，但以中國和印度數學文本進

行的比較研究仍然不多。學者們長期以來都注意到中國和印度的代數成果、

程序、計數系統和天文學間有著相似之處。然而，這些比較研究為史學提

出了一個有趣的疑問：因為兩國的數學文本分別以文言文和梵文書寫，兩

者的文本成為了所謂「中國數學」或「印度數學」的代表，從而將文化概

念降為國族或文明概念。 

自 Wylie 在一八五二年首次提出比較研究，許多學者不斷致力於研究

中國和印度在不定方程組間的相似性。對印度在不定方程組（kuṭṭaka）的

貢獻和解法，以及秦九韶大衍術的研究，都構成了印度和中國數學比較研

究史的重要部分。本文具有雙重目的：1) 研究歷史書寫的構造，尤其概念

傳輸是如何取決於算法的偏見；2）提出一個可替代的比較研究方法和展示

其前景。研究者將結合近期有關認識論文化的研究、基於李冶和那拉衍那

（Nārāyaṇa）中世紀文本例子和他們與認知研究的關係，以展示這項比較

研究的啟發性面向。 
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I. Introduction 

Comparing Chinese and Indian mathematical texts may sound like a strange 

enterprise. Scholars have long noticed similarities between Chinese and Indian 

algebraic results and procedures, and these similarities are an interesting question 

for historiography. The principal objective of a comparison is to determine the 

differences or convergences of two thoughts belonging to distinct linguistic, 

chronological, geographical, or cultural horizons. Comparisons mainly aim to 

identify possible influences, ramifications, contacts and mutual representations; 

sometimes, they are a tool of Universalist philosophy. Comparisons have heuristic 

and historical potential when used to identify similarities. By interrogating 

differences, comparisons contribute to questioning of certain ‘obvious’ concepts. 

They unveil an underlying structure of thought that is not self-evident. Here the 

purpose is strictly heuristic. I do not intend to add another comparative study. I 

wish to investigate the comparative method’s potential dimensions and investigate 

how mathematics from China and India have historically been compared. 

Comparative methods can unveil different strategic objectives, like modes of 

systematization and styles of reasoning. A comparison of differences leads to a 

reflection on cultural aspects that are involved in mathematical activity. 

Furthermore, it encourages questioning the conceptual definition of “culture” and 

“tradition” when one faces mathematics written in different languages. These 

concepts are often still applied like labels applicable to the whole of China and 

India, as if there were only one culture or one continuous tradition to the present 

in China or India. The aim of this study is to challenge the view of mathematics as 

uniform fields relating to specific “cultures” by identifying the mosaic of 

mathematical practices or cultures of computation. 

Connections between China and India focused on several aspects: Buddhism, 

mainly with figures like Yi Xing 一行 (8th century) and Fa Xian 法顯 (4th-5th 
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centuries), numeration systems, solutions to indeterminate equations, magic 

squares, arithmetical triangles and the broken bamboo problem. These aspects 

were always studied separately, and most of the time comparisons are used to claim 

the authorship of a procedure and the recognition of influences. When comparing 

the Indian and Chinese procedures, the most addressed topic the is the solution to 

indeterminate equations. The first mention of rules was stated in China during the 

3rd century, followed with new development in India and ended with the Chinese 

remainder theorem by Qin Jiushao 秦九韶  during the Song dynasty (960 – 

1279). After the re-edition of Qin Jiushao’s works in the private library collection 

Yijia tang congshu 宜稼堂叢書 (Yi Jia Tang Collection) in 1842, a debate started 

concerning the connection between these procedures.  

In this article, I will use the example of indeterminate equation to study the 

historiography of comparison whose purpose is to identify influences. Then I will 

present another promising hypotheses to show the potential of contrast, if 

understood as comparison of ramification or a heuristic comparison.  

II. 1. Comparison of influence: Chinese and Indian 

treatises on indeterminate analysis 

Similarities between procedures called Indeterminate Analyses have been a 

topic of research since the 19th century. The Chinese remainder theorem is a 

theorem of number theory, which states that if one knows the remainders of the 

Euclidean division of an integer n by several integers, then one can uniquely 

determine the remainder of the division of n by the product of these integers, under 

the condition that the divisors are coprime pairwise. The earliest known statement 

of the theorem, as a problem with specific numbers, appeared in the treatise Sunzi 

Suanjing 孫子算經 (The Mathematical Classic of Master Sun) compiled between 

the 3rd and 5th century:  
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“Now, there is an unknown number of things. If we count by threes, there 

is a remainder of two; if we count by fives, there is a remainder of three; 

if we count by sevens, there is a remainder of two. Find the number of 

things.”1 

Sunzi's work does not, however, contain the full algorithm. The result was 

later generalized with a complete solution generally called dayanshu 大衍術 or 

more precisely dayan zongshu shu 大衍總數術 (Great Inference/Extension for 

All Numbers) and its core sub-procedure, dayan qiuyi shu 大衍求一術 (Great 

Inference/Extension to Find One) in Qin Jiushao's 1247 Shushu Jiuzhang 數書九

章  (Mathematical Treatise in Nine Sections). Indeterminate analysis arose in 

China primarily as a method to calculate calendars.2 Chinese astronomers had to 

solve systems of relationships with data so vast that it was impossible to get unique 

solutions without some special algorithms. The Chinese remainder theorem was 

one such algorithm. It is not clear when the Chinese began to investigate this type 

of calculation. Unfortunately, the complete calculation method used by 

astronomers contemporary to Sunzi has not been passed down to the present. Qin 

Jiushao gave the systematic description as a finished product in the 13th century.  

Similar problems of calendar construction arose in India and the Islamic 

world due to calendar making and astronomical calculation issues. An algorithm 

for solving indeterminate equation was described by Āryabhaṭa (5th or 6th century). 

It is in Āryabhaṭa’s work, Āryabhaṭīya, Ārya-siddhanta, that we come across the 

first unequivocal discussion of the subject of indeterminate analysis. It arose, just 

as the previous theorem did in China, in the field of astronomy, where there is a 

                                                 
1  Lam Lay Yong and Ang Tian Se translation. From Sunzi suanjing Ch.3, prob.26. 今有物，不知

其數。三、三數之，賸二；五、五數之，賸三；七、七數之，賸二。問物幾何？Lam Lay 

Yong and Ang Tian Se, Fleeting Footsteps: Tracing the Conception of Arithmetic and Algebra in 

Ancient China,Revised edition (Singapore :World Scientific,2004),p. 139. 

2 Li Yan and Du Shiran ,Chinese Mathematics: A Concise History, Translated by Crossley J.N and 

Lun AA. W-C., (Oxford: Clarendon Press,1987), p.94. 
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need to determine the orbits of planets.3 Special cases of the Chinese remainder 

theorem were also known to Brahmagupta (7th century) Brāhmasphuṭasiddhānta, 

Bhāskara I (7th century) Āryabhaṭīyabhāṣya, Mahāvīra (9th 

century) Gaṇitasārasan̄graha, Bhāskara II (12th century) Siddhānta Shiromani, 

Lilāvatī and later appear in Europe in Fibonacci's Liber Abaci.4  

In India, the method used to solve an indeterminate equation is called kuṭṭaka. 

It is a method for solving equations in the form of ax + c = by, with whole numbers. 

The method is based on the division of a by b, b by the remainder of the previous 

division, etc. Numbers are decreasing, and after several operations, the remainder 

is zero. As the number of solutions is infinite, the purpose is to find the smallest 

positive solutions for x and y.   

The Sanskrit words kuṭṭa, kuṭṭaka, kuṭṭākāra are derived from the root, 

meaning kuṭṭ, “to crush”, “to grind”, “to pulverise”. Gaṇeṣa in a commentary to 

Bhāskara’s Lilāvatī explains:  

“kuṭṭaka is a term for the multiplier, for multiplication is admittedly 

called by words importing ‘injuring’, ‘killing’. A certain given number 

being multiplied by another [unknown quantity], added by a given 

divisor leaves no remainder; that multiplier is the kuṭṭaka: so it has been 

said by the ancients. This is a special technical term.” 5 

It has been observed that the subject of indeterminate analysis of the first 

degree was considered so important in India that the whole science of algebra was 

once named after it. Āryabhaṭa II enumerates it distinctively along with the 

                                                 
3  Joseph,G.G.,The Crest of the Peacock. Non-European Roots of Mathematics, 3rd edition 

(Princeton and Oxford:Princeton University Press, 2011), p.386. 

4  Leonardo Fibonacci, Liber Abaci (1202), Laurence E.Sigler (trad.), Fibonacci's Liber Abaci : A 

Translation Into Modern English of Leonardo Pisano's Book of Calculation (Springer-Verlag, 

2002). 

5  Datta, B. and Singh, A. N.,History of Hindu Mathematics, A Source Book, Part II, (Bombay, 

India: Asia Publishing House,1935), p.90. 
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sciences of arithmetic, algebra and astronomy. So did Bhāskara II and others. The 

treatment of indeterminate analysis is sometimes presented as a last section of 

pātīgaṇita (literally “board-computation,” sometimes translated as “arithmetic”). 

However, it belongs to bījagaṇita (literally “seed-computation,” sometimes 

translated as “algebra”), like in the case in Bījagaṇitāvataṃsa by Nārāyaṇa (14th 

century) or Bījagaṇita by Bhāskara II. In contrary to the scarcity of Chinese 

evidence, there is abundant literature in India. For solving the same type of 

problems, China provides the earliest evidence, while India furnishes an 

abundance of examples, thus drawing attention to the question of similarity, 

difference and influence of the two procedures.  

In Europe, the notion of congruences was first introduced and used by Carl 

Friedrich Gauss (1777-1855) in his Disquisitiones Arithmeticae of 1801. Gauss 

illustrates the Chinese remainder theorem on a problem involving calendars, 

namely, "to find the years that have a certain period number with respect to the 

solar and lunar cycle and the Roman indiction." 6 Gauss introduced a procedure 

for solving the problem that had already been used by Leonhard Euler (1707-1783) 

but was in fact an ancient method that had appeared several times: the problem of 

calendar making attracted the attention of astronomers from Sunzi to Qin Jiushao 

(this period includes the Indian development) whose statement of the rule for the 

general solution of the indeterminate equation of the first degree predates the work 

of Euler and Gauss by at least five hundred years. 

1. The historiography 

Since the 19th century, many scholars have focused on the resemblance 

between the Chinese remainder theorem and the Indian solution to indeterminate 

equations. The study of India’s contribution to the solution of indeterminate 

                                                 
6  Indiction is a fiscal period of fifteen years used as a means of dating events and transactions in 

the Roman Empire, in the papal and some royal courts, used from the 4th century onwards until 

as late as the 16th century. 
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equations (kuṭṭaka) and the dayan 大衍 method of Qin Jiushao represent an 

important part of the historiography of the comparative study of mathematics in 

India and China.  

This happened in the specific context of the rediscovery of early Chinese 

mathematics in China: starting in the 18th century Chinese scholars gathered 

ancient and medieval texts intending to recover Chinese knowledge in reaction to 

Western knowledge brought by the Jesuits. In 1838 and 1839, some samples of 

mathematical knowledge from China arrived in Europe thanks to the works of G. 

Libri and E. Biot. From August 1852, the British Protestant missionary and 

sinologist, Alexander Wylie (1815–1887) published nine instalments of an account 

entitled Jottings on the Science of the Chinese Arithmetic in the newspaper North 

China Herald.  Wylie could provide a more documented work because he had 

access to materials in China and was in contact with the most important 

mathematician of that time, Li Shanlan. Wylie's series of article played a 

pioneering role in studying of the history of Chinese mathematics in the Western 

world. It is now considered the only reliable source on the history of Chinese 

mathematics that preceded the publication of Yoshio Mikami’s The Development 

of Mathematics in China and Japan in 1913.7 According to Wylie, the series’ 

objective was to clarify some erroneous statements about the status of mathematics 

in China found in the Western publications of that time. Westerners in the 19th 

century thought that the Chinese possessed only limited mathematical knowledge. 

In order to respond to the claim that there was no algebra in China, Wylie provided 

some algebraic methods, the most well know one being the dayan. This series was 

translated into German by Biernatski in 1856 and later into French by Terquem in 

1863.8 These translations were more accessible than the original source published 

in Shanghai. They thus became influential for historians at the end of the 19th 

                                                 
7  Dauben, J. W. (ed.),The History of Mathematics from Antiquity to the Present: A Selective 

Annotated Bibliography , (New York: Garland,1985); Siu Man-Keug & Chan Yip-cheung, “On 

Alexander Wylie’s Jotting on the science of the Chinese Arithmetic,” Hisrory and Pedagogy of 

Mathematics 2012, (Daejeon, Korea: DCC, July 16-20 2012).  

8  Terquem, O., Nouvelles Annales de Mathematiques (2e ser., 1863), p.35. 
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century and in the early 20th century like Hankel, Zeuthen, Vacca and Cantor. The 

translations were not free from mistakes and the historians, who had no access to 

Chinese sources, attributed the mistakes to the Chinese authors instead of to the 

translators.9 

Some scholars were certain that the dayan method was derived from the 

kuṭṭaka since Wylie’s first study based on an article written in 1817. 10  The 

majority of these studies are dedicated to paternity questions or to universalist 

proofs. That is, either one wanted to show that a country had first made a discovery 

and influenced other countries, or one wanted to show the universality of algebra 

by showing its existence in every country despite different methods of expression. 

Comparisons of points of resemblance were used to focus on influences and 

circulation of knowledge. In 1973, Ulrich Libbrecht 11 following Yushkevich, 

12concluded that it makes no sense to accept the idea of a historical relationship 

between the Chinese dayan procedure and the Indian kuṭṭaka, and that the 

resemblance was superficial, which is also the conclusion of G.G. Joseph. 

“There are four currently accepted approaches to solving the astronomy 

problem: (1) An arithmetic approach whose result is laborious and restricted; (2) 

The approach that originated with Āryabhaṭa, refined by Brahmagupta, Mahāvīra, 

and Bhāskara II, referred to as kuṭṭaka and which consists of continuous divisions 

and substitutions; (3) The method favoured in recent time, with is close to the 

Indian one; and (4) The Chinese procedure (dayan).”13 

                                                 
9   Martzloff, J. C., Histoire des Mathématiques Chinoises (Paris : Masson,1988). 

10   Wylie, A ,“Jotting on the Science of the Chinese: Arithmetic,” North China Herald, (Aug.-

Nov, 1852), p.185. 

11   Libbrecht,U., Chinese Mathematics in the Thirteenth Century: The Shu-shu chiu-chang of 

Ch’in Chiu-shao (Cambridge, Massachusetts :The MIT Press,1973),pp. 220-222, 359-366. 

12  Yushkevich, A. P., “O dostizenijax kitajskix ucenyx v oblasti mathematiki,” (On the 

achievements of Chinese scholars in the field of mathematics), in Iz Istorii Nauki I Texniki 

Kitaja (Essays in the History of Science and Technology in China), Moscow, p.130. 

13  Joseph,G.G.,The Crest of the Peacock. Non-European Roots of Mathematics, p.283-285. 
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It would seem that this conclusion is the prevalent one nowadays.  

In Europe, this history started with a publication in Journal Asiatique by 

Biot14 who first mentioned the Chinese remainder theorem. However, it seems 

that the publication remained unnoticed. Alexander Wylie’s 1852 “Jotting on 

Science of the Chinese” in the North China Herald, on the other hand, gathered 

considerable momentum. It was the first time that Qin Jiushao’s rule by was 

explained in detail. Wylie’s publication includes a full explanation of Qin 

Jiushao’s first problem and some notes on other problems. Ten years earlier, Qin 

Jiushao’s works were republished in the Yijia tang congshu 宜稼堂叢書 in China, 

and this may have enabled Wylie to study the dayan procedure.  

Wylie 15  was the first to state that “[t]his appears to be the formula, or 

something very like it, which was known to the Hindoos under the name of Cuttaca, 

or as it is translated ‘Pulverizer,’ implying unlimited multiplication, which is not 

far from the meaning of the ta-yen or ‘Great Extension’”. Libbrecht16 identified 

his source as the Edinburgh Review and claims that Wylie’s source is insufficient 

for proving a similarity between the two procedures.  

Cantor already acknowledged this insufficiency17: “It is also a fact that this 

(dayan) method is absolutely different from the Indian pulverization, with which 

[scholars] liked to compare it before they understood it”. 18  In addition, 

Biernatzki19 translated Wylie statement into German and added : “However it 

does not follow that the Chinese received their arithmetical  researches ready-

                                                 
14  Biot, E.,“Table générale d’un ouvrage chinois intitule Souan-Fa Tong-Tsong, ou traité complet 

de l’art de compter,” Journal asiatique, 3rd series, No.7, (1839), p. 207. 

15  Wylie, A ,“Jotting on the Science of the Chinese: Arithmetic,” p.185. 

16  Libbrecht,U., Chinese Mathematics in the Thirteenth Century: The Shu-shu chiu-chang of 

Ch’in Chiu-shao, p.359. 

17  Cantor, M., Vorlesungen über die Geschichte der Mathematik, vol. 1, 1880-1908, p. 587. 

18  Es steht eben so fest, dass dieses Verfahren von der indischen Zerstäubung, mit welchem man 

es zu vergleichen liebte, bevor man es verstand, durchaus verschieden ist… 

19  Biernatzki, K.L. ,“Die Arithmetik der Chinesen,”Journal für reine und angewandte 

Mathematik, 52 (1856) , p.83. 
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made from the Indians, or borrowed from them their elements of arithmetic, 

especially the Great Extension rule”.20Despite common points, both Cantor and 

Biernatzki argue that the two procedures are not related. 

It is in 1874 that Hankel 21  reanimated the debate: “If any proof is still 

necessary that a very close interconnection exists between Indian and Chinese 

mathematics, then this can be found in the ta-yen rule (dayan), which is mentioned 

in the third century A.D. in the Suan-ching of Sun Tzu (Sunzi suanjing) and which 

was discussed in detail at the beginning of the eight centuries in the Ta-yen li-shu 

(dayan lishu), the work of an Indian Buddhist monk … This ta-yen (dayan) is 

ultimately nothing other than the Indian kuṭṭaka, which was precisely the same 

applications to chronology and calculations of conjunctions”.22 Libbrecht notices 

the absence of argument for all of these statements and the confusion between the 

Buddhist monk Yixing and the Yi-jing 易經 (Book of Change). 

The first argumentation based on a full explanation appeared in Matthiessen23 

who demonstrated that the dayan and kuṭṭaka methods are two different methods. 

According to Matthiessen, the Indian kuṭṭaka agrees with the method of Bachet de 

Mérizac, whereas the dayan is the same method as Gauss’s congruences. Libbrecht 

concluded that “Only an internal analysis of both methods is able to yield a 

scientific treatment of the question”. However, Matthiessen did not access any 

                                                 
20  Daraus folgt aber nicht, dass die Chinesen ihre arithmetischen Forschungen von dem Hindus 

fertig übernommen, oder von ihnen Elemente dere Arithmetik, insbesondere die grosse 

Erweiterungsregel, entlehnt haben.  

21  Hankel, H., Geschichte der Mathematik im Altertum und Mittelalter( Leipzig,1874), p.407. 

22  Wenn es noch eines Beweises bedürfte, dass zwischen indisher und chinesischer Mathematik 

der engste Zusammenhang besteht, so ist die Regel Ta jan (= Grosse Erweiterung), die schon im 

3. Jahrhundert n. Chr. In den Suan-king (= arithemtisher Klassiker) des Sun-Tse vorkommt, und 

im Anfange des 8. Jahrhunderts ausführlich behandelt wurde in dem Ta jan li shu (=Sehr 

erweitertes Himmelzeichenbuch), dem Werke eines indisher [!] Buddhapriesters… Diese Regel 

Ta jan ist aber nichts anderes, als die indischen kuṭṭaka, von der hier ganz dieselben 

Anwendungen auf die Chronologie und die Berechnung gewisser Constellation gemacht warden 

wie dort…”. 

23  Matthiessen, L. ,“Vergleichung der indischen Cuttaca und der chinesischen Tayen-Regel,” in 

Sitzungsberichte der mathematisch-naturwissenschaftlichen Section in der 30. Versammlung 

deutscher Philologen und Schulmänner in Rostock, 1975, 75 (Leipzig, 1876). 
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documents other than Biernatzki’s translation. In fact, he could not know the 

Chinese method of solving the congruence as he had no access to the Chinese texts.    

The opposition between Hankel and Matthiessen was well known to the 

Japanese scholar Hayashi who in 1905 wrote: “Hankel … shows us that the da-yan 

rule for the solution of indeterminate equations is the same as the cuttaca d’hyana 

of Indian mathematics, while Matthiessen … shows us that the cuttaca is the 

method of continued fractions and the da-yan rule is the method of congruences of 

Gauss”.24 However, lots of literature derives from another source from Europe. 

Van Hee was the second European sinologist after Wylie to have access to 

Chinese sources. Between 1911 and 1913, he published a series of articles on 

Chinese mathematics, including a special article on indeterminate analysis: “The 

foreign influence manifests itself: (a) the numbers are written from left to right, 

horizontally; (b) the ta-yen (dayan), or formula for solving indeterminate problems, 

resemble the Indian kuṭṭîkara”. Libbrecht25 provides valuable details to show how 

Van Hee’s contributions are highly debatable. On the basis of a few problems 

riddled with many misunderstandings, he derived Qin Jiushao’s work from India. 

His influence on other historians of mathematics was important.26 For instance, as 

Needham27 noticed, G. Loria’s articles published between 1921 and 1929 are a 

                                                 
24  Hayashi, T. ,“Brief History of Japanese Mathematics,” Nieuw Archief voor Wiskunde. 

6(1905),p.310. 

25  Libbrecht,U., Chinese Mathematics in the Thirteenth Century: The Shu-shu chiu-chang of 

Ch’in Chiu-shao, pp.319-322. 

26  Libbrecht showed how the influence was not constructive. Van Hee spreads the idea that there 

is no generality and synthesis in Chinese text : “Chez les mathematiciens jaunes, c’est l’amour 

du detail, sans grand soucis de la synthese” (“in the mind of yellow mathematician, there is love 

of detail, without great concern for synthesis”).Van Hee.,“L’algèbre chinoise,” Toug Pao, 

13(1912), p.291. “J’ajoute que si les livres des mathematiques chinois de toute epoque 

disparaissaient, la science n’y perdrait rien comme mathematiques” (« I say in addition that if 

the works of the Chinese mathematicians of every era were to disappear, science would lose 

nothing in the way of mathematics »). “ Le classique de l’ile maritime, ouvrage chinois du IIIe 

siècle,” Quellen und Studien zur Geschichte der Mathematik (Part B: Astronomie und Physik), 

2(1932), p.259. 

27  Needham, J.,Science and Civilisation in China (Cambridge,1954), vol.3, p.1, note e. 
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restatement of Van Hee’s publication.28 Loria stated that Qin Jiushao produced “a 

treatise in which one recognizes foreign influence”. 29 As Needham says: “he 

suffered from an invincible suspicion that the Chinese must have borrowed all their 

ancient techniques from the West”.30 Libbrecht reaches the same conclusion and 

mentions another article published in 1931 by Smith who refers to Van Hee, using 

the same examples found in Loria and doubting the Chinese procedure 

authenticity. 31 Smith’s mistakes are also repeated in Becker and Hofmann’s 

Geschichte der Mathematik.32 

There was no need to wait until 1951 for the first critique written in a Western 

language to the conjectural attribution of Indian origin to Chinese mathematics. 

The Japanese historian Mikami said in 191333: “the possibility of the Chinese 

mathematics having influenced by the science in India may well be conjectured 

from the meager account here given [that is about I-hsing (Yixing)]. As for exact 

information, we have none”. Afterwards there were no reactions from Loria 

towards Mikami’s critic. Cajori’s article on Chinese mathematics34was based on 

Mikami’s findings. Historians who were not affected by Van Hee and Loria’s 

conclusions disconnected the Chinese remainder theorem from the Indian 

                                                 
28  Loria, G., “Documenti relativi all’antica matematica dei cinesi,”Archeion, 3(1922), pp.141-
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30  Needham, J.,Science and Civilisation in China (Cambridge,1954), vol.3, p.1, note e. 

31  Libbrecht,U., Chinese Mathematics in the Thirteenth Century: The Shu-shu chiu-chang of Ch’in 

Chiu-shao,pp. 323-324; Smith, D.E.,“Unsettled Questions concerning the Mathematics of 

China,” The Scientific Monthly., Vol. 33, No. 3 (Sep., 1931), pp. 244-250.  
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33  Mikami, Y., The Development of Mathematics in China and Japan (Abhandlungen zur 
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34  Cajori, F., A History of Mathematics, 2nd edition (New York,1919),pp. 71-77. 
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procedure. Tropfke35repeats Matthiessen statement that dayan and kuṭṭaka are 

different, while Sarton36deals with Qin Jiushao without mentioning influence.  

In the 1950’s the debate on influences between India and China was far from 

over, but the argument in favor of influence and similarity became quite different. 

Yushkevitch, who had access to original sources and new Chinese scholar works 

like Li Yan and Qian Baocong, produced the most important modern study prior 

to Needham’s Science and Civilization in China. He gave an objective description 

of Chinese mathematics without any preconception about the level of advancement 

they were supposed to reach or not. In 196437, he stated: “The Indian method is of 

course quite different from the Chinese one”38 confirming Matthiessen’s idea. 

This does not mean that the debate was over because on the other side, Needham39 

claimed that “the Chinese dayan procedure was similar to the kuṭṭaka … method 

in Indian mathematics…” and “the argument of Matthiessen that they were very 

different does not carry conviction”.  

The debate about the possible influences among procedures naturally finds 

echoes in India, but the debate is not focusing on relation with China. Instead, it is 

the so-called “Western” influence that will make Indian historians of mathematics 

react. H. Kern (1833-1917) had edited Āryabhaṭa’s Āryabhaṭīya in 1874.40 The 

first translation in a European language was made Leon Rodet (1850-1895), in 

French, in 1879,41 and the first English translation appeared much later, thanks to 

P. C. Sengupta (1876-1962) in 1927. However, Rodet’s interpretation is now 

considered faulty. G. R. Kaye, member of the Department of Education of the 

                                                 
35  Tropfke, J.,Geschichte der Elementarmathematik,7 vols (Leipzig,1921-1924). 
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39  Needham, J.,Science and Civilisation in China (Cambridge,1954), vol.3, p.122, note c. 

40  Kern, H., The Aryabhaṭīya with the commentary of Bhaṭadīpika of Parameśvara 

(Leiden,1874). 

41  Rodet, L., Leçons de calcul de Aryabhata(Paris: Imprimerie nationale,1879). 
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Government of India (Simla in North India) wrote an interpretation in 1908 of the 

Indian method. 42  Passionate about history of astronomy, mathematics and 

astrology, he produced many influential publications. His purpose was to show 

that “the work of Indian mathematicians from Āryabhaṭa to Bhāskara are 

essentially based on Western knowledge”.43 By “Western knowledge” he means 

the Greco-Latin origin transmitted through Arabic intermediaries. D. E. Smith, 

Cajori and Sarton all spread Kaye’s interpretation by publishing his findings. 

Similarly, Majumdar 44  adopted Kaye’s faulty reading. Majumdar argued that 

sophistication can be a criterion: « I absolutely fail to see how the Chinese method 

can stand in comparison with, or can be taken as the basis of, the elaborate process 

of the Indians».45 1927 seems to be a turning point in India: Indian scholars took 

the stage to argue with Kaye. Sengupta published the English translation of 

Āryabhaṭīya and proposed an interpretation of solution to indeterminate analysis 

based on Brahmagupta.46 In 1930, Clark47 relied on Parameśvara while Datta48 

and Ganguli49 referred to Bhāskara I. The comparison with China was not their 

main preoccupation. However, it was Ganguli who concluded in 1931 on the topic: 

“… that this method (dayan) is different from the Indian methods…”. 50 

Nonetheless in 1964, S.N. Sen stated that “if there was any borrowing between 
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China and India, it was not India but China at the receiving end”.51 Sen’s chief 

aim is to prove the priority of Indian mathematics. “Moreover, SunTzu gave an 

example with answer; Āryabhaṭa I, on the other hand, or more correctly, the school 

to which he belonged, gave correct and general rules for the solution of both linear 

and simultaneous indeterminate equations. The chronological argument of about a 

hundred years between the time of Sun Tzu and Āryabhaṭa I, to which some 

emphasis has been given, is hardly of any significance in the view of the interest 

already referred to of the Vedic Hindus in indeterminate problems”. 52  The 

argument is based on the anteriority of the Vedic tradition.   

The Chinese perspective is well summarized by Li Yan and Du Shiran53: 

“Indian astronomy passed into China, but its sorts of methods did not arouse the 

interest of Chinese astronomers and mathematicians […] The knowledge of 

mathematics and astronomy introduced from India did not have a great influence 

on Chinese mathematics and astronomy” 54because the pen and paper computation 

were found too complicated compared to counting rods in the Tang dynasty. They 

admitted that there might have been exchanges “in both directions” during the Sui 

and Tang dynasties (581-907 AD), but none of these exchanges left substantial 

traces. Li Yan devoted several publications to Qin Jiushao and the dayan method, 

as well as Qian Baocong. 55  More recent publication by Lu Peng and Ji 

Zhigang56also states that the two procedures are independent. Their computation 
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structures and history of changes in computation are too different. If there are 

similarities, it is a coincidence. There are no mentions of possible relations with 

India on the topic of solution to indeterminate equation. In general, only the 

discussion on the origin of the numeration system for great numbers in Buddhist 

texts find its ways into these publications.  

 In the short history presented above we see that what is labeled “Chinese” is 

a set of texts written in traditional Chinese script and what is labeled as “Indian” 

is - mainly written - Sanskrit culture. Other Indian languages and vectors of 

transmission that are not books were dismissed. There are only very few 

publications about Tibet, and scientific practices do not seem to be in the scope of 

history of mathematics. For instance, China is seen as a continuous whole as if 

nothing changed during centuries. What is called “traditional Chinese mathematics” 

cover different practices and methods. For instance, the method for setting up and 

solving cubic equations in the Jigu suanjing 缉古算经 (The Continuation of 

Ancient Mathematics) written in the time of Tang dynasty (618-907) is essentially 

different from the Procedure of Celestial Source used in Song dynasty (960-

1279) .57 As well, the interpretation of what is an equation in the Procedure of 

Celestial Source is not the same in Song and Qing dynasty (1644-1912).58 Seeing 

the diversity of mathematics in Tang, Song and Qing dynasty as simply ‘Chinese’ 

is an oversimplification leading to historical nationalism.  

Mathematics is essentially seen as a written product made to convey 

readymade procedures. The names ‘China’ and ‘India’ are applied like labels as if 

there were only one culture in China or India and as if historically the two 

geographical areas corresponded exactly to the modern notion we have of China 
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and India as nations. Furthermore, knowledge is reduced to particularism (ex. 

“Chinese traditional mathematics” or “Vedic mathematics”), essentialized and 

reduced into distinct disciplines when, in fact, both mathematical methods were 

part of astronomical practice. The more we read about mathematical comparison, 

the less we see astronomy. Mathematics is artificially separated from astronomy 

as if they the two had not once been connected. Also, author-to-author transmission 

seems to only happen through an exchange of written materials. Other practices 

are not taken into account and one should not forget that practices were not 

confined by the boundaries we anachronistically term “civilizations”. Libbrecht 

describes beautifully how : “historical nationalism rises where historical science is 

unable to provide evidence, in default of historical data”.59 History of science 

practiced in a certain way contributes to shaping collectives that perceive 

themselves as communities. 

2. The question of transmission: algorithm versus deduction 

Even if Libbrecht is aware of nationalism hidden in comparative history of 

mathematics, he is not immune to other prejudices. Libbrecht60 stated that the 

historical data are insufficient to lead to a scientific conclusion on a relation 

between the two methods. He relies on an “internal analysis”61 to conclude that “it 

makes no sense to accept the idea of historical relationship between [the two 

methods]” and remains unconvinced of any potential relations. His idea of 

transmission is the following:  

“It may be considered as a general rule that an algorithm borrowed from a 

foreign country is preserved more or less in its original state, and in many cases 
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even the numbers are not changed. The reason seems to be that an algorithm, as it 

is not part of a general deductive system, is not derived easily from another 

algorithm. This means that, if an algorithmic rule is transmitted, there may be 

changes in the problems themselves, but seldom in the method; and when two 

different cultures make use of different patterns to solve the same problem, it is 

entirely wrong to deduce the first method from the second, even if this is possible 

in our deductive systems”. 62 

This kind of argument raises several problems. 

First of all, what exactly is an “internal analysis”? This phrase seems like a 

transcription into modern mathematical language. Indeed, it seems impossible not 

to translate an ancient mathematical text into modern terms. Everyone is aware 

now that modern mathematical description is a didactic tool to help to 

communicate mathematical content. Thus, modern concepts should be carefully 

handled as they cannot recover ancient concepts in their entirety. What may seem 

the same object within modern mathematical transcription is granted a different 

status in various sources. It is crucial that the history of mathematics not only 

describe the evolution of procedures, but also the evolution of the understanding 

of mathematical objects. For example, there have been different concepts of 

equations available in the world, and they have been identified as the same object 

only retrospectively because our analysis of ancient sources uses contemporary 

concepts that were designed through their synthesis. The use of modern 

mathematical terminology solely for the purpose of comparison leads to a 

standardization of practice under the criteria of our contemporary reading and 

prevents the valorization of the specificities of each text. Yet, it is also important 

to keep mathematical transcription in order to compare it with textual analysis. A 

text is not always a narration, a description or a presentation; it is a demonstration 

of results and concepts and thus contains traces of activities linked to their 
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interpretation. Literal translation should complete modern mathematical 

transcription as it implies taking into account the way in which mathematical 

objects manifest themselves inside the text and the relations induced by the way of 

“talking about” these objects. “Internal analysis” is necessary but not sufficient.  

More interestingly, Libbrecht’s conclusion is based on the assumption that 

algorithm cannot be transmitted the same way as axiomatic-deductive reasoning. 

His idea is that an algorithm cannot be transformed or reinterpreted. The reasoning 

seems to be that an algorithm is not part of a general deductive system and is not 

derived easily from another algorithm. This means that if an algorithmic rule is 

transmitted, there may be changes in the problems themselves, but seldom in the 

method. According to Libbrecht, when two different “cultures” make use of 

different patterns to solve the same problem, it is wrong to deduce the first method 

from the second even if this is possible in deductive systems. The problem is that 

by opposing calculation and proof, one is reducing the scope of mathematical style 

of thinking to ‘axiomatic-deductive’ and to a certain type of proof. This conception 

of algorithm mistakenly reduces algorithms to method by repetition or recipe. In 

mathematics education it has become clear that changing data implies changes in 

method too, and vice et versa. These are practices of verification and 

demonstration inside algorithms. 63Articulation of a list of operations also conveys 

mathematical meaning.64 Libbrecht’s argument results from the modern division 

between applied and theoretic mathematics, where the first is often undermined. 

                                                 
63  Pollet, C. ,“Reading Algorithms in Sanskrit: How to Relate Rule of Three, Choice of 

Unknown and Linear Equation?,” in A. Volkov and V. Freiman (eds.), Computations and 

Computing Devices in Mathematics Education before the Advent of Electronic Calculators 

(Mathematics Education in the Digital Era Series, Springer Publishers,2018); Pollet, 

C.,“Interpreting Algorithms written in Chinese from the Point of View of Comparative 

History,” in A. Volkov and V. Freiman (eds.), Computations and Computing Devices in 

Mathematics Education before the Advent of Electronic Calculators (Mathematics Education 

in the Digital Era Series, Springer Publishers,2018). 

64  Chemla, K.,“What is the content of this book? A Plea for Developing History of Sciences and 

History of Text Conjointly,” Chemla Karine (ed), History of Science, History of Text, 

(Dordrecht-Boston-London: Kluwer Academic Publishers,2004) pp. 201- 230; Pollet, C. , The 

Empty and the Full: Li Ye and the way of mathematics (Singapore:World Scientific,2020). 



A plea to re-investigate mathematical cases from India and China                197 

xxi 

This modern division also applies to “cultures” assimilated to country and frontiers 

seen through a contemporary lens. India and China are still both seen uniform 

entities with deep borders. Furthermore, some scholars have drawn artificial 

boundaries between proof, deduction and algorithm. In order to redress this 

situation, one needs to reinvestigate the division between cultures, calculation and 

proof.  

II. Comparison of ramification: From the point of view of 

epistemic culture 

Recently, Zhu Yiwen65 has demonstrated that Qin Jiushao was also versed in 

astronomy and how his calendrical knowledge was linked to other knowledge (e.g. 

accounting and divination). Zhu Yiwen talks about “culture of computations”, 

borrowing the concept from Chemla and Fox-Keller, 66to show that Qin Jiushao 

was confronted with two types of practices of different cultures and that his writing 

reflects how he dealt with this.  

Zhu Yiwen showed that there were several dayan methods. One method is 

named Great Inference Procedure to Find One (大衍求一術 dayan qiuyi shu) and 

another is named Great Inference Procedure for All numbers (大衍總數術 dayan 

zongshu shu).  The Procedure to Find One is to be related to the Fangcheng 方

程 procedure used in a specific way by calendarists. The Fangcheng procedure is 

one of the nine branches of mathematics in the Zhouli 周禮 (Rites of Zhou), and 
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its procedure was first recorded in the Jiuzhang suanshu 九章算術  (Nine 

Chapters of Mathematical Procedures). From a modern mathematical point of 

view, it is a method to solve linear equations. Like most ancient procedures, the 

procedure was carried out using counting rods. 67  It appears in most Chinese 

mathematical documents but did not receive any improvement until Qin Jiushao’s 

work. Zhu Yiwen observed that the Fangcheng used in astronomy may be different 

from that presented in the Nine Chapters. The improvement by Qin Jiushao find 

its origin in astronomy. Qin Jiushao studied this procedure from calendarists. In 

order to further the reformation of the Kaixi calendar which happened during the 

Song dynasty, he decided to write down the procedure. Looking at calendars in 

official history, Zhu Yiwen noticed that numerous astronomical data were written, 

but only few procedures were recorded. Astronomical procedures were secret in 

order to keep the monopole over calendar production. Qin Jiushao established new 

connections among the Fangcheng procedures, the Procedure to Find One and the 

Book of Changes. The Procedure for All Numbers is inspired by the Book of 

Changes. Relating the procedures to one another gave him legitimacy to break the 

secrecy of the unwritten rules of astral sciences.  

Qin Jiushao was within different cultures of computations that are 

respectively in mathematics and astronomy. For cultures of computations in 

mathematics, procedures were recorded in mathematical books with textual 

descriptions. As for the cultures of computations in astronomy, procedures were 

seldom recorded in calendars. Combining several elements from different cultures, 

Qin Jiushao created another kind of dayan procedure. He textualized the counting 

rods procedure, which will become known as the Chinese Remainder Theorem.  

If we relate the Chinese remainder theorem to a culture of computation from 

calendar making in astronomy, then it is difficult to ignore Indian connections. 

Although it is quite impossible to imagine Qin Jiushao in direct contact with 
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Sanskrit culture, there are connections. Foreign contacts through the spread of 

Buddhism, which began during the last decades of the Han dynasty, continued –in 

art, sculpture, medicine, the sciences as well as religion. For instance, Fa Xian, the 

famous Buddhist pilgrim, set out for India in 399 and travelled the length and 

breadth of Northern India and over central Asia for fifteen years. Fa Xian lived 

during a period which saw two important mathematicians: Sun Zu (c. 300), in 

whose work we find the beginnings of indeterminate analysis, and Zu Chongzhi 

祖冲之(c. 450), who accurately approximated Pi to be equal to 355/113.  

There is only fragmentary evidence of Chinese-Indian cultural and scientific 

contacts before the rise of Buddhism around the 4th century AD. We do know that 

Xuan Zang 玄奘(c. 650 AD) and a number of Chinese Buddhist scholars, among 

whom early travellers such as Fa Xian, made their pilgrimage to holy places in 

India, bringing back many texts for translation. Among the places they visited were 

monasteries such as Nalanda and Taxil, which were Indian centres of scholarship 

not only in religion but in medicine, astronomy, and mathematics as well. Few of 

the writings or commentaries by these Buddhist pilgrims from China have been 

examined for what they may reveal about Indian sciences, the main interest being 

in their religious and sociological content. There was also evidence of Chinese 

diplomats posted to the court of the Guptas in India around the 5th century AD; and 

from the 7th century, there is evidence that translations were made of Indian 

astronomical and mathematical texts, such as Po-luo-men Suanfa 婆羅門算法

(Brahman Arithmetical Rules) and Po-luo-men Suanjing 婆羅門算經 (Brahman 

Arithmetical Classic) mentioned in records of the Sui dynasty (581–618). These 

works are no longer extant, and thus it is difficult to assess how influential they 

were on Chinese science. However, there is clearer evidence of Indian influence 

on Chinese astronomy and calendar making during the Tang dynasty. Indian 

astronomers were employed in the Imperial Bureau of Astronomy and charged 

with the tasks of preparing accurate calendars, some of which contain the names 

of Indian astronomers. One of the Indians, whose Chinese name was Xi Da 

(Siddhartha), was reputed to have constructed in 718 AD a calendar based on the 

https://fr.wikipedia.org/wiki/581
https://fr.wikipedia.org/wiki/618
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Indian Siddhanta of Varāhamihira (c. 550 AD), on the orders of the first emperor 

of the Tang dynasty. The text contains sections on Indian numerals, operations, 

and sine tables. There are also sine tables at intervals of 3deg.45’ for a radius of 

3438 units, which are the values given in the Indian astronomical texts Āryabhaṭīya 

and Sūrya-Siddhānta. This is the earliest record of a Chinese science table in any 

Chinese text. The works of Michio Yano68 investigate several texts containing 

computations in astral sciences translated from Sanskrit into Chinese and 

preserved in Japanese monasteries since the 9th century. The first is the Jiuzhili 九

執曆 (Navagraha Calendar) translated into Chinese in 718 by an Indian living in 

China whose excerpt are reminiscent of the Pañcasiddhāntikā by Varāhamihira 

(6th century). The second is Qiyao rangzai jue 七腰攘災決 (Secrets of Avoiding 

Disasters According to the Seven Planets). A Brahman originating from West India 

compiled it in 9th century. His name has been translated into Chinese and the text 

made its way to Japan in 865. The third is Su yao jing宿曜经 (Canon of Lunar 

Lodges and Planets), which is also an Indian astrological text translated into 

Chinese from the mid-8th century. Yano gives an objective description of the 

content, text and mathematical formulae, and their relation with Sanskrit 

astronomical texts available in India. However, there is no philological 

interpretation. When one looks at the second wave of Buddhism, it becomes even 

clearer that conceptualizing cultures as nations is flawed. The spread of medieval 

Sanskrit mathematical astronomy into the northern Himalayas apparently occurred 

around the time of the so-called “second transmission” or revitalization of 

Buddhism in Tibet in the 11th century, largely influenced by Esoteric Buddhism in 

India. Its chief vehicle seems to have been the Sanskrit Buddhist work Kala-cakra-

tantra, which was translated into Tibetan and Mongolian. The Indian mathematical 

astronomy therein described became the foundation of traditional calendars in 

Tibet, Mongolia, and Bhutan, which coexisted with a different form of 
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mathematical astronomy derived from China.69 We see here that it is difficult to 

speak of simple transmission and that it is difficult to apply the concept of borders. 

Another example, Chemla and Keller, 70  also illuminates a number of 

concepts and operations concerning quadratic irrationals in India and China, which 

is opposed to the usage in Greek sources. Despite noted differences, they describe 

a cluster of similar features in the conception and use of quadratic irrationals in 7th 

century India and in first to 3rd century China. The same author71 illustrates the 

complexity of transmission of knowledge between East and West. Her study of the 

Rule of False Double Position shows a direct transmission from China to Arabic-

speaking worlds. She observed that stability of the way of expressing these rules 

and of applying them makes it difficult to believe in independent discoveries. 

Everything indicates a continuation from China, to Arabic-speaking world then 

into Europe, however the sophistication of the older Chinese sources seemed not 

to have been retained in the process of transmission. Moreover, after observing 

some Arabic and Chinese mathematical texts, Chemla72 showed that in Arabic 

sources of the twelfth century, algorithms are similar to procedures contained in 

Chinese and, independently, in Indian sources. If one pays attention to the way in 

which algorithms for root extraction are set up and results are generated, there 

seem to be two distinct traditions of Arabic mathematics. One of these traditions, 

embodied by al-Uqlidisi and by al-Khwarizmi, shares common features with all 

                                                 
69  Ohashi Yukio, “Remarks on the origin of Indo-Tibetan astronomy,” in Selin, Helaine (ed.), 

Astronomy Across Cultures: The History of Non-Western Astronomy (Dordrecht: Kluwer, 

2000), pp. 341-369. 

70  Chemla, K. and Keller, A.,“The Sanskrit karaṇīs and the Chinese mian (side). Computation 

with Quadratic Irrationals in Ancient China and India,” in Y. Dold-Samplonius, J.W. Dauben, 

M. Flokerts, B. Van Dalen (Eds), From China to Paris : 2000 Years Transmission of 

Mathematical Ideas (Boethius:Franz Steiner Verlag,2002), pp. 87-132. 

71  Chemla, K.,“Reflections on the world-wide history of the rule of false double position, or how 

a loop was close,” Centaurus, Vol.39(1997), pp. 97-120. 

72  Chemla, K.,“Nombre, opérations et equations en divers fonctionnements: quelques méthods de 

comparaison entre des procedures élaborées dans trois mondes diffrérents,” In I. Ang and P.E 

Will (eds.), Nombres, astres, plantes et viscères. Sept essais sur l’histoire des sciences et des 

techniques en Asie orientale(Paris : College de France, Institut des Hautes Etudes 

Chinoises,1994) (Memoires de l’Institut des Hautes Etudes Chinoises, XXXV), pp. 1-36. 
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Indian algorithms and none of the Chinese ones; the other tradition, embodied by 

Kushyar ibn-Labban and his student Nasawi, shares the opposite features with all 

the Chinese texts and none of the Indian ones. Following this basis, Chemla 

suggested abandoning the hypothesis that the corpus of Arabic texts is organized 

into a linear continuation from Greece and India to Arabic worlds. She 

distinguished two traditions among Arabic arithmetic, indeed one linked to India, 

but the other to China. Despite there being no historical evidence of any direct 

connection, there is a set of clues on possible mathematical connections between 

China and the Arabic world around the eleventh and the twelfth centuries about 

equations 

That is, this raises the question the circulation of mathematical concepts and 

practices between China and India and argue that a whole part of the international 

history of mathematics remains unexplored. In 2016, Hoyrup showed that milieus 

matter more than nationality.73 He showed that some problems have circulated as 

‘subscientific’ mathematics, more precisely as professional riddles belonging to an 

environment of mathematical practitioners. Travelling merchants and accountants 

do not share the same culture. Arithmetical riddles might be carried along the Silk 

Road within a transnational network of travelling merchants and were exchanged 

as campfire for fun or challenge. Some geometrical knowledge travelled too, but 

to a lesser extent and in a different context. In this context, it would be important 

to understand how epistemological cultures were in contact in China and India. 

This should include an investigation of primary sources, an investigation of 

mathematical practices and cultures of computation, and an investigation of the 

construction of comparisons. These new findings on Qin Jiushao and on Tibetan 

astronomy have provided new interpretations on what is called “influences”. They 

                                                 
73  Hoyrup, J. ,“Seleucid, Demotic and Mediterranean Mathematics versus Chapter VIII and IX of 

the Nine Chapters: Accidental or Significant Similarities?,”《自然科學史研究》Researches 

in the History of Natural Sciences, Vol.35 (2016), pp. 463-476. 
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invite us to re-investigate the history of exchange between Chinese and Indian 

areas.  

There are no direct connections with one mathematician copying and 

translating another mathematician’s materials, but instead a steady stream of 

exchange between north (Mongolia) and south (Tibet, India), East (China) and 

West (India). There are practices borrowed and mixed, combined with other 

practices as we see in Qin Jiushao’s case. Cultures of computation change along 

with practices and concepts. Practices and concepts also change along with the 

practitioner’s work. An unawareness of these streams of exchange has resulted in 

a situation whereby the relations between practices in mathematics and astronomy 

are insufficiently treated in the field of history of mathematics. To make matters 

worse, the separation of the two fields (mathematics and astronomy) led to a 

feeling of contempt towards the algorithmic shape of Chinese mathematics in 

Western historiography. However, if one sees the relation through the prism of 

epistemological cultures, one needs to reopen the debate. Cultures in this case do 

not equate to nation or language, but rather to specific practices belong to specific 

milieu. That is to say that there are as many differences between “China” and 

“India” as there are between an astronomer and an accountant. Sources are written 

in relation to specific cultures of mathematical practices.  

III. Heuristic comparison: From the point of view of 

cognitive history 

There is another way to use comparison that shows promise when we 

investigate differences. This section deals with identifying different kinds of 

cognition. We have long known how important the contribution of history of 

mathematics has been for mathematics education – and then link it to psychology... 

Since Piaget, we have known that children’s logic is different from that of adults, 

and we know that the teaching of mathematics should be adapted to the cognition 
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of children. The main question in mathematics education is to decide how it should 

be adapted. History of mathematics can show the difficulties encountered by our 

ancestors facing new mathematical objects, how they reacted to new concepts and 

how they were creative in their own answers. Using philology to read ancient texts 

also provides some clues on how texts were composed and read and on the link 

between texts and mathematical practices. This type of academic practice reveals 

some cognitive aspects different from or similar to ours. Naturally, we cannot 

deduce that the cognition of ancient mathematicians is the same as that of children 

studying new mathematical objects. Yet, it seems it is possible to measure the 

possible gaps between our thinking and other types of thinking. To reconstruct the 

logic of others, we must be able to think of unexpected relations. Comparison is a 

way to think the unexpected. The comparative method applied to “non-Western” 

mathematics is a way to open a window on something different to the usual 

axiomatic-deductive style of thinking. 

 Stengers already discussed the epistemological problems of cognitive 

history of science in “Quelle histoire des sciences?” (What kind of history of 

sciences?) in 1984.74 But recently Netz has offered a new insight on practices 

which may have an influence on the cognitive possibility of science.75 He opened 

a door for the interpretation of results generated by philological methods applied 

to scientific discourses and related diagrams, showing that a Cognitive History of 

Science is possible. It would be a philosophical anthropology of scientific reason 

that holds that styles of scientific thinking are grounded in innate potentials, many 

of which are cognitive, which have to be discovered in the course of human history. 

This is something we already find in Piaget to some extent. Piaget did not start his 

work in children psychology per se. His aim was to explore the mechanisms 

responsible for cognitive development and children were living laboratories.  

                                                 
74  Stenger, I., “Quelle histoire des sciences ?,”Histoire des Sciences et Psychogenese. 

(Geneva:Fondation Archives Jean Piaget,1983). 

75  Netz, R., The Shaping of Deduction in Greek Mathematics. A Study in Cognitive History 

(Cambridge University Press,1999). 
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 Netz’s research is to be related to the concept of styles found in historical 

epistemology, according to Hacking.76  Styles are constituted by methods and 

objects (not by disciplines). They introduce new objects and new criteria that 

determine whether those objects are perceived as true or false. They define the 

criteria for truth-telling in their domain. They are autonomous, “self-authenticating” 

(they introduced their own criteria of evidence), proof and demonstration and they 

are punctuated by moments of crystallization. This philosophy of style implies 

cognitive foundations and cultural history: styles are grounded in human cognitive 

and physiological capacities, which are universal. Meanwhile, scientific styles are 

also the product of cultural innovation and evolution. In case of mathematics, there 

is a module (or group of modules) dedicated (i) to spatial configurations, (ii) to 

numerical or arithmetical reasoning, (iii) to algorithmic and combinatorial 

reasoning. Hacking does not favor the idea of continuity in history of sciences. On 

the contrary, he argues that there are sharp moments of crystallization, moments 

in the evolution of style of scientific thinking that are irreversible in effect. Such a 

moment is also accompanied by a ‘legend’, for example Galileo for hypothetical 

modelling or Euclid for axiomatic deductive style. Spatial geometrical thinking 

involves cognitive capacities different from arithmetical, combinatorial and 

algorithmic reasoning. The evolution of this style in the 9th century on the Arabian 

Peninsula is represented by Al-Khwarizmi as a moment of crystallization for 

combinatorial thinking. According to Hacking, mathematical objects are born out 

of perspicuous proof, not calculation. The problem is that by opposing calculation 

and proof, he is reducing the scope of mathematical style of thinking to being 

exclusively ‘axiomatic-deductive’ and to a certain type of proof, thus excluding 

proof of correction of algorithms. His way of describing algorithms echoes 

Libbrecht’s described above: deduction on one side, algorithm on the other. Here, 

philosophy echoes culturalization in history of sciences.  

                                                 
76  Hacking, I., Scientific Reason (Taipei,Taiwan: NTU Press,2009). 
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 Chemla77 has already shown that computational problems whose sequence 

of procedure aims at the proof of correction of an algorithm are experiences of 

generality. In a recent study Pollet78 shows that geometry in Yigu yanduan 益古

演段 (the Development of Pieces of Areas According the Collection Augmenting 

the Ancient Knowledge) written by Li Ye 李冶 in 1259, is all about seeing and 

grasping mathematical arguments on the construction of polynomials and 

equations. The interesting point is that all demonstrations rely on the capacity of 

readers to visualize transformations of geometrical figures. All proofs rely on the 

ability of the practitioner to see movements and interactions of geometrical areas.  

The problems in the Yigu yanduan are related to computations of circular and 

square areas. However, problems that looks like practical surveying are the frame 

of expression of an abstract procedure. In the first problem - computing the 

diameter of a circular pond knowing the side and area of an outer field-, Li Ye adds 

geometrical figures and the tian yuan algorithm. The operation on geometrical 

figures consists of cutting, pasting areas and reading them as piled layers. In other 

words: by drawing and visualizing the transformations of areas, the mathematician 

justifies the construction of the terms of the equation. The diagram is therefore the 

main tool for the construction of an equation. By legitimizing the origins of the 

areas, it consequently confirms the validity of the procedure. The diagram is at 

once an interpretation, a rewording of the data laid out in the statement of the 

problem and a way to visualize the equation. It provides verification of how the 

data of the statement are transformed into an equation, so value of the diagram is 

also demonstrative. After 64 problems, the practitioner sees the analogical 

connection among problems. The combination of multiple figures guides the 

practitioner to understand the generality of the procedure. Generality thus 

                                                 
77  Chemla, K.,“What is the content of this book? A Plea for Developing History of Sciences and 

History of Text Conjointly,” Chemla Karine (ed), History of Science, History of Text, 

(Dordrecht-Boston-London: Kluwer Academic Publishers,2004) pp. 201- 230. 

78  Pollet, C. , The Empty and the Full: Li Ye and the way of mathematics (Singapore:World 

Scientific,2020). 
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expresses itself through the organization of the order of problems, which appears 

after a mental visualization of the transformation of diagrams.   

The treatise, which looks like a repetitive list of algorithms, is in fact a 

dynamic structure guiding the practitioner to an experience on generality. 

Interestingly, we see a combinatorial system hidden behind the list of the algebraic 

procedure and their geometrical solutions. This combinatorial thinking related to 

algebra is at least as old as the 9th century in China. This style must be rooted in 

the Taoist network and in the philosophy of Changes, which makes its origin even 

older. This combinatorial thinking reminds one of practices at work in magic 

squares. It is accepted that apart from Zhang Zhao (1650 AD) who showed the first 

complete magic square of order 10 and Bao Jishou (1880 AD) who constructed 

three-dimensional magic cubes, spheres and tetrahedrons, there was hardly any 

innovation since Yang Hui楊輝 (13th century). I showed how Li Ye and Yang 

Hui’s algebra is related to practice of combinatorics and how their lists of 

geometric problems is more related to the investigation of magic square than to 

teaching algebra.79 That is algebra, combinatorics and geometry were already 

connected. We can also see this phenomenon in India, but there are meaningful 

differences.  

First of all, many Sanskrit texts are shaped like an enumeration. The texts are 

usually organized around the classification of mathematical objects, procedures 

(arithmetic or algebraic) and resolution of equation. It is an enumeration of topics 

and their combination of objects. As if enumerating all the parts composing what 

we name “algebra”, it constructs an analytical inventory of the fundamental 

realities constituting the field of mathematics. For instance, the Bījagaṇitāvataṃsa 

written by Nārāyaṇa in 14th century is shaped like a list of topics followed by many 

of examples. Nārāyaṇa is the author of two works: interestingly one contains an 

important chapter on algebra and the other on magic squares.  

                                                 
79  Pollet, C. , The Empty and the Full: Li Ye and the way of mathematics (Singapore:World 

Scientific,2020). 
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Nārāyaṇa is the main source quoted when it comes to magic squares, 

permutation and combination in India. The other book, Gaṇitakaumudī (GK. 

“moonlight of mathematics” 1356) is always quoted as a masterpiece on 

combinatorial thinking in India. GK Ch. 13 contains rules on combinatorics 

(permutations, combinations, partitions, binomial and multibinomial coefficients, 

sequence of polynomial coefficients etc.), series and related topics. GK Ch. 14 

focuses on magic squares instead. Magic squares have not been dealt with by any 

other earlier Hindu mathematicians.80 Magic squares have been known in India 

since at least the 6th century in Varāhamihira. Nārāyaṇa is the first to introduce 

magic squares as a topic in pāṭī-gaṇita, ‘the mathematics of algorithm’ (R.XIII. 1-

9): “For the pleasure of mathematicians, [I] now describe briefly the anka-pāśa 

(concatenation of numbers, i.e., combinatorics) where bad, wicked and intoxicated 

mathematician’s vanity shatters. The knowledge of anka-pāśa is very useful in 

dramatics, prosody, medicine, garland making, architecture and mathematics”. 

Nārāyaṇa mentions dramatics and prosody first. Indeed, there is an explicit 

tradition of combinatorial thinking is Sanskrit metric.  

The basic units in Sanskrit prosody are syllables with one mātrā (syllabic 

instant), called laghu (light), and syllables with two mātrā, called guru (heavy). 

Pingala (+/- 200 BC) summarizes these rules in Chandahsūtra (Prosody rules). 

Nārāyana extends and generalizes these pratayas of Sanskrit prosody to 

combinatorial. From a combinatorial point of view, the idea is to determine the 

configurations of forms under given constraints. All rules stated in versified sūtra 

are a progression towards generalization. Interestingly, Nārāyaṇa gives exhaustive 

rules for constructing not only ordinary magic squares but also variants made by 

combining multiple magic squares. Here, combinatorial thinking has other roots 

than its Chinese counterpart. Yet, in both cases they will be connected to numbers 

and algebra in the same time period. In Nārāyaṇa’s works, one finds more or less 

the same ingredients of numerology and combinatorial analysis as in the Chinese 

                                                 
80  Kusuba, T.,“Combinatoric and Magic Square in India: A Study of Nārāyana Pandita’s 

Ganitakaumudi”, Chapters 13-14( Ann Arbor,1994). 
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sources.81 It is interesting to note that the works of Thabit ibn Qurra (850 AD), al-

Gazzali (1075 AD), and al- Biruni (1225 AD) contain the same perspective. 

Independently from Chinese authors, Nārāyaṇa also produced work on both magic 

squares and algebra. 

What we have then are mathematicians in two distinct cultural spheres that 

show a relation between algebraic and combinatorial thinking. But, in Chinese, we 

have mathematical objects which are not described, but rather defined by their 

function in movement in geometrical figures. In Sanskrit, some enumerations 

express properties that are assigned to procedure. We can link these observations 

to Inge Schwank’s research on algorithmic thinking cognitive structures. 82 

Schwank shows that it is possible to identify two types of cognition in algorithmic 

thinking: A predicative one focusing on structures and their description, whose 

expression is static, and a functional one interested in processes and effects, whose 

expression is dynamic. In both cases, we see algorithm and lists, but their way of 

processing unveil different cognitive practices.  

Comparing Sanskrit and Chinese sources is a key to understanding what is 

called algebra in India and its relations to China through the prisms of practices. 

These two areas’ study is promising for history of cognitions: from spatial 

configuration to combinatorial and algebraic thinking. We can agree on an 

evolution of cognition as proposed by Hacking, but style should not be reduced to 

axiomatic deductive style. The distinction between functional and predicative 

cognition seems promising. The division between cultures, calculation and proof 

must be re-investigated.  

 

                                                 
81  Joseph,G.G.,The Crest of the Peacock. Non-European Roots of Mathematics, p.214. 

82  Schwank, I., “On the Analysis of Cognitive Structures in Algorithmic Thinking”. Journal of 

Mathematical Behavior. Vol.12(1993). 
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IV. Conclusion 

A comparison between Chinese and Indian algorithmic constructions of 

polynomial equations shows the implication of deductive skills. The use of analogy 

in Chinese texts or algorithms in Indian texts is argumentative since these are 

verification and demonstration practices. The articulation of a list of operations 

conveys mathematical meaning. Li Ye relied on a dynamic reading of diagrams to 

focus on equations and this should be related to functional cognition. Nārāyaṇa 

preferred descriptions of structures and relations among objects 

(unknowns/indeterminates). Here, the function is predicative. Li Ye used 

visualization in geometry and combinatorics to reach generality. This practice is 

related to the Taoist investigations of Changes. Nārāyaṇa also used combinatorics 

from the context of prosody. This result has implications on what we define as 

‘mathematical culture’. If culture consists of patterns - explicit and implicit – and 

of behavior that has acquired and transmitted symbols; if culture constitutes the 

distinctive achievements of human groups, including their embodiments in 

artifacts then the essential core of culture consists of traditional (historically 

derived and selected) ideas and especially their attached values.83 If we talk about 

behavior related to the interpretation of symbols, then identifying practices and 

cognitive structures in ancient text is extremely significant. The description of 

culture as epistemic culture yields an important tool for carrying out conceptual 

history. This works in several ways: cultures change in relation to the conceptual 

work done; concepts change in relation to how actors work. Therefore, there 

cannot be any influence of “China” or “India”. Instead, there are influences from 

calendarists to mathematicians. The question of influence or comparison presented 

in coincidence with nations is nothing but culturalism. Culturalism is a perspective 

that views scientific cultures and practices in terms of ‘essential’ cultures of the 

country in question and that seeks to understand their development through 

                                                 
83  Kroeber and Kluckhohn, Culture: A critical review of concept and definitions (Papers of the 

Peabody Museum of American Archeology and Ethnology, Harvard University,Vol. XLVII. 

N.1) (USA:Cambridge, Massachusets,1952). 
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macroscopic consideration of such culture. 84  It assumes that the ‘influenced’ 

culture is always passive and depicts essential culture as unique to the area and 

fundamentally different from cultures from other regions. It supposes a form of 

cultural determinism about science as well. That is the assumption that cultural 

differences can explain the existence of different scientific practices in other places. 

Instead, one needs to approach cultures by recognizing their heterogeneity and 

transregionality.  

 

  

                                                 
84  Ito, K. ,“Cultural Difference and Sameness: Historiographic Reflections on Histories of 

Physics in Modern Japan,” in Chemla, K. Fox-Keller, E.(eds.), Cultures without Culturalism: 

The Making of Scientific Knowledge (Duke University Press, 2017), p.49. 



212       Taiwan Journal of East Asian Studies, Vol. 18, No. 1 (Issue 35), June.2021 

xxxvi 

Bibliography 

BIERNATZKI, K.L.  

1856  “Die Arithmetik der Chinesen,”Journal für reine und angewandte 

Mathematik, 52 (1856) , pp. 59-94.  

BIOT, E.  

1839   “Table générale d’un ouvrage chinois intitule Souan-Fa Tong-Tsong, 

ou traité complet de l’art de compter,” Journal asiatique, 3rd series, 

No.7, (1839), pp. 193-217.  

BECKER and HOFMANN.  

1951   Geschichte der Mathematik,1951. 

CAJORI, F.  

1919    A History of Mathematics, 2nd edition (New York,1919).  

CANTOR, M.  

1908   Vorlesungen über die Geschichte der Mathematik, 4vols/ Leipzig, 

1880-1908).  

CHEMLA, K.  

1994   “Nombre, opérations et equations en divers fonctionnements: quelques 

méthods de comparaison entre des procedures élaborées dans trois 

mondes diffrérents,” In I. Ang and P.E Will (eds.), Nombres, astres, 

plantes et viscères. Sept essais sur l’histoire des sciences et des 

techniques en Asie orientale(Paris : College de France, Institut des 

Hautes Etudes Chinoises,1994) (Memoires de l’Institut des Hautes 

Etudes Chinoises, XXXV), pp. 1-36.  

1997   “Reflections on the world-wide history of the rule of false double 

position, or how a loop was close,” Centaurus, Vol.39(1997), pp. 97-

120. 

2004   “What is the content of this book? A Plea for Developing History of 

Sciences and History of Text Conjointly,” Chemla Karine (ed), History 

of Science, History of Text, (Dordrecht-Boston-London: Kluwer 

Academic Publishers,2004) pp. 201- 230. 



A plea to re-investigate mathematical cases from India and China                213 

xxxvii 

CHEMLA, K. and KELLER, A.  

2002   “The Sanskrit karaṇīs and the Chinese mian (side). Computation with 

Quadratic Irrationals in Ancient China and India,” in Y. Dold-

Samplonius, J.W. Dauben, M. Flokerts, B. Van Dalen (Eds), From 

China to Paris : 2000 Years Transmission of Mathematical Ideas 

(Boethius:Franz Steiner Verlag,2002), pp. 87-132. 

CHEMLA, K. and GUO, S.  

2004   Les Neufs Chapitres: Le Classique des Mathematiques de la Chine 

ancienne et ses commentaires (Dunod,2004).  

CHEMLA, K. and FOX-KELLER, E.  

2017   Cultures without Culturalism: The Making of Scientific Knowledge 

(Duke University Press, 2017).  

CLARK, W. E.  

1930  The Aryabhatiya of Aryabhata, translated into English with notes 

(Chicago: University of Chicago Press,1930).  

DATTA, B.  

1932  The Sciences of the Sulbas: A study in early Hindu geometry (Calcutta: 

Calcutta University Press,1932).  

DATTA, B. and SINGH, A. N.  

1935  History of Hindu Mathematics, A Source Book, Part I and II, (Bombay, 

India: Asia Publishing House,1935).  

DAUBEN, J. W. (ed.) 

2000  The History of Mathematics from Antiquity to the Present: A Selective 

Annotated Bibliography (Revised Edition), (New York: Garland,198), 

(Revised CD_ROM edition published by American Mathematical 

Society,2000). 

GANGULI, S. 

1929 “Notes on Indian Mathematics: A criticism of G. R. Kaye’s 

interpretation,” Isis 12(1929),pp.132-145. 



214       Taiwan Journal of East Asian Studies, Vol. 18, No. 1 (Issue 35), June.2021 

xxxviii 

1931  “India’s contribution to the Theory of Indeterminate Equations of the 

Frist Degree,” The Journal of Indian Mathematical Society 

(Madras),19(1931), pp.110-169.  

HACKING, I.  

2009  Scientific Reason (Taipei,Taiwan: NTU Press,2009).  

HANKEL, H.  

1874  Geschichte der Mathematik im Altertum und Mittelalter( Leipzig,1874). 

HAYASHI, T.  

1905  “Brief History of Japanese Mathematics,” Nieuw Archief voor Wiskunde. 

6(1905), pp. 296-361.  

HOYRUP, J.  

2016  “Seleucid, Demotic and Mediterranean Mathematics versus Chapter 

VIII and IX of the Nine Chapters: Accidental or Significant 

Similarities?,”《自然科學史研究》Researches in the History of 

Natural Sciences, Vol.35 (2016),pp. 463-476. 

ITO, K.  

2017  “Cultural Difference and Sameness: Historiographic Reflections on 

Histories of Physics in Modern Japan,” in Chemla, K. Fox-Keller, 

E.(eds.), Cultures without Culturalism: The Making of Scientific 

Knowledge (Duke University Press, 2017).  

JOSEPH, G. G 

2011  The Crest of the Peacock. Non-European Roots of Mathematics, 3rd 

edition (Princeton and Oxford:Princeton University Press, 2011).  

KAYE, G. R.  

1908  “Note on the Indian Mathematics. No. 2. Aryabhaṭa,” Journal of the 

Asiatic Society of Bengal IV 8(1908), pp. 111-114.  

1915  Indian Mathematics(Calcutta, 1915). 

KERN, H.  

1874  The Aryabhaṭīya with the commentary of Bhaṭadīpika of Parameśvara 

(Leiden,1874).  



A plea to re-investigate mathematical cases from India and China                215 

xxxix 

KUSUBA, T.  

1994  “Combinatoric and Magic Square in India: A Study of Nārāyana 

Pandita’s Ganitakaumudi”, Chapters 13-14( Ann Arbor,1994). 

KROEBER and KLUCKHOHN 

1952  Culture: A critical review of concept and definitions (Papers of the 

Peabody Museum of American Archeology and Ethnology, Harvard 

University,Vol. XLVII. N.1) (USA:Cambridge, Massachusets,1952).  

LAM, Lay Yong and ANG, Tian Se  

2004  Fleeting Footsteps: Tracing the Conception of Arithmetic and Algebra 

in Ancient China,Revised edition (Singapore :World Scientific,2004).  

LEONARDO FIBONACCI 

2002  Liber Abaci (1202), Laurence E.Sigler (trad.), Fibonacci's Liber Abaci : 

A Translation Into Modern English of Leonardo Pisano's Book of 

Calculation (Springer-Verlag, 2002). 

LIBBRECHT, U.  

1973  Chinese Mathematics in the Thirteenth Century: The Shu-shu chiu-

chang of Ch’in Chiu-shao (Cambridge, Massachusetts :The MIT 

Press,1973).  

LI, Yan 

1958 Zhongguo kexue dagang 中 國 數 學 大 綱 [Outlines of Chinese 

Mathematics], 2 vols (Beijing: Kexue chubanshe,1958).  

LI, Yan and DU, Shiran 

1987  Chinese Mathematics: A Concise History, Translated by Crossley J.N 

and Lun AA. W-C., (Oxford: Clarendon Press,1987). 

LIM, T. S. L. and WAGNER D. B.  

2017  “The Continuation of Ancient Mathematics: Wang Xiaotong’s Jigu 

suanjing,”Algebra and Geometry in the 7th-Century China 

(Copenhagen: NIAS Press, 2017). 

LORIA, G.  



216       Taiwan Journal of East Asian Studies, Vol. 18, No. 1 (Issue 35), June.2021 

xl 

1922  “Documenti relativi all’antica matematica dei cinesi,”Archeion, 3(1922), 

pp.141-149. 

1929   Storia delle matematiche dall’ alba della civiltà al secolo XIX, 3 vols 

(Turin, 1929).  

LU, Peng呂鵬 and JI, Zhigang紀志剛 

2019  “Yindu kutaka xiangjie ji qi yu da yan zongshu shu bijiao xin tan” 印

度庫塔卡詳解及其與大衍總數朮比較新探 [Detailed Explanation 

of Kutaka, India and a New Probe into Comparison with Dayan 

Summarization],《自然科學史研究》Researches in the History of 

Natural Sciences, Vol.38, Issuse 2(2019), pp. 172-188. 

MATTHIESSEN, L.  

1876  “Vergleichung der indischen Cuttaca und der chinesischen Tayen-

Regel,” in Sitzungsberichte der mathematisch-naturwissenschaftlichen 

Section in der 30. Versammlung deutscher Philologen und 

Schulmänner in Rostock, 1975, 75 (Leipzig, 1876).  

MAJUMDAR, N. K.   

1912  “Aryabhata’s rule in relation to indeterminate equations of the first 

degree,” Bulletin of the Calcutta Mathematical Society,3(1911-1912).  

1914  “On Chinese Indeterminate Analysis,” Bulletin of the Calcutta 

Mathematical Society, 5(1913-1914) .  

MARTZLOFF, J. C.  

1988   Histoire des Mathématiques Chinoises (Paris : Masson,1988).  

MIKAMI, Y.  

1913  The Development of Mathematics in China and Japan (Abhandlungen 

zur Geschichte der mathematischen Wissenschaften, n.30), Leipzig, 

1921 (reviewed by H. Bosmans, 1913). 

NEEDHAM, J.  

1954  Science and Civilisation in China, 7 vols(Cambridge,1954).  

NETZ, R.  



A plea to re-investigate mathematical cases from India and China                217 

xli 

1999  The Shaping of Deduction in Greek Mathematics. A Study in Cognitive 

History (Cambridge University Press,1999). Ideas in Context 51. 

OHASHI, Yukio.  

2000  “Remarks on the origin of Indo-Tibetan astronomy,” in Selin, Helaine 

(ed.), Astronomy Across Cultures: The History of Non-Western 

Astronomy (Dordrecht: Kluwer, 2000), pp. 341-369. 

POLLET, C. 

2018a  “Reading Algorithms in Sanskrit: How to Relate Rule of Three, Choice 

of Unknown and Linear Equation?,” in A. Volkov and V. Freiman (eds.), 

Computations and Computing Devices in Mathematics Education 

before the Advent of Electronic Calculators (Mathematics Education in 

the Digital Era Series, Springer Publishers,2018). 

2018b  “Interpreting Algorithms written in Chinese from the Point of View of 

Comparative History,” in A. Volkov and V. Freiman (eds.), 

Computations and Computing Devices in Mathematics Education 

before the Advent of Electronic Calculators (Mathematics Education in 

the Digital Era Series, Springer Publishers,2018). 

2020 The Empty and the Full: Li Ye and the way of mathematics 

(Singapore:World Scientific,2020). 

POLLET, C. and YING, J-M.  

2017 “One quadratic equation, different understandings: the 13th century 

interpretation by Li Ye and later commentators in the 18th and 19th 

centuries” Journal for History of Mathematics,Vol. 30 No.3 (June 2017), 

pp. 137-162. 

QIAN, Baocong.  

1966  Song yuan shuxue lunwenji 宋元數學史論文集[Collection of essays 

on the history of Song and Yuan mathematics] (Beijing,1966).  

RODET, L.  

1879  Leçons de calcul de Aryabhata(Paris: Imprimerie nationale,1879). 

Siu Man-Keug & Chan Yip-cheung 



218       Taiwan Journal of East Asian Studies, Vol. 18, No. 1 (Issue 35), June.2021 

xlii 

2012  “On Alexander Wylie’s Jotting on the science of the Chinese Arithmetic,” 

Hisrory and Pedagogy of Mathematics 2012, (Daejeon, Korea: DCC, 

July 16-20 2012).  

SMITH, D.E.  

1931  “Unsettled Questions concerning the Mathematics of China,” The 

Scientific Monthly., Vol. 33, No. 3 (Sep., 1931), pp. 244-250.  

SARTON, G.  

1947 Introduction to the History of Sciences, 3 vols, No. 376. 

(Baltimore:Carnegie Institution Publ,1927-1947). 

SEN, S. N.  

1962 “Study of Indeterminate Analysis in Ancient India”. Proc. 10th 

International Congress of the History of Sciences (Ithaca, 1962).  

SENGUPTA, P. C.  

1927  “The Aryabhatiyan, translation, ”Journal of the Departments of Letters 

of the University of Calcutta, XVI (1927).  

STENGER, I.  

1983  “Quelle histoire des sciences ?,”Histoire des Sciences et Psychogenese. 

(Geneva:Fondation Archives Jean Piaget,1983).  

SCHWANK, I.  

1993  “On the Analysis of Cognitive Structures in Algorithmic Thinking”. 

Journal of Mathematical Behavior. Vol.12(1993).  

Terquem, O.  

1863  Nouvelles Annales de Mathematiques (2e ser., 1863).  

TROPFKE, J.  

1924  Geschichte der Elementarmathematik,7 vols (Leipzig,1921-1924).  

VAN HEE.  

1912  “L’algèbre chinoise,” Toug Pao, 13(1912).  

1932  “Le classique de l’ile maritime, ouvrage chinois du IIIe siècle,” Quellen 

und Studien zur Geschichte der Mathematik (Part B: Astronomie und 

Physik), 2(1932).  



A plea to re-investigate mathematical cases from India and China                219 

xliii 

WYLIE, A 

1852  “Jotting on the Science of the Chinese: Arithmetic,” North China Herald, 

(Aug.-Nov, 1852). Nos. 108, 111, 112, 113, 116,117, 119, 120, 121. 

Repr. Copernicus, 1882, 2, 169, 183. (For other reprints, see Needham’s 

Science and Civilization in China, vol. 3, p.800).  

YANO, Michio. 

1979  “The Chiuchih-li and the Ārdharātrika-pakṣa,”Journal of Indian and 

Buddhist Studies, Vol.27, No.2, pp. 953-956. 

1986  “The Ch’iyao jang-tsai-chueh and its Ephemerides,” Centaurus 29, 

pp.28-35. 

1987  “The Hsiu-yao Ching and its Sanskrit Sources,” History of Oriental 

Astronomy (Cambridge University Press,1987), pp. 125-134. 

YUSHKEVICH, A. P.  

1955  “O dostizenijax kitajskix ucenyx v oblasti mathematiki,” (On the 

achievements of Chinese scholars in the field of mathematics), in Iz 

Istorii Nauki I Texniki Kitaja (Essays in the History of Science and 

Technology in China), Moscow. 

1964  Geschichte der Mathematik im Mittelalter (tr. from Russian)(Leipzig, 

1964). English translation, History of Mathematics in the Middle 

Ages,Cambridge, Mass., and London, 1973.  

ZHU, Yiwen.  

2017 “Qin Jiushao dui dayanshu de suantu biaoda: jiyu  Shushu Jiuzhang Zhao 

Qimei chaoben (1616) de fenxi”秦九韶對大衍術的筭圖表達：基於

數書九章趙琦美鈔本 (1616)的分析 [Qin Jiushao's Writing of the 

‘Great Inference Procedure’ Using Counting-Diagrams: Based on the 

Analysis of Zhao Qimei’s Manuscript of the Mathematical Book in Nine 

Chapter  (1616)], Ziran kexueshi yanjiu自然科學史研究[Studies in the 

History of Natural Sciences], 36 (2),pp. 244–257. 



220       Taiwan Journal of East Asian Studies, Vol. 18, No. 1 (Issue 35), June.2021 

xliv 

2020  “How do We Understand Mathematical Practices in Non-mathematical 

Fields? Reflections Inspired by Cases from 12th and 13th Century 

China,”Historia Mathematica(June,2020).  

https://doi.org/10.1016/j.hm.2020.04.004 


